Nunchaku 项目使用与启动教程
1. 项目介绍
Nunchaku 是一个专为 4-bit 扩散模型优化的高性能推理引擎,它基于我们的论文《SVDQuant》中的技术。Nunchaku 能够有效减少模型大小,提升运行速度,并且保持视觉保真度。通过使用 SVDQuant 技术后,12B FLUX.1 模型的大小可以减少至原来的 1/3.6,同时在 RTX 4090 GPU 上提供比 16-bit 模型快 8.7 倍的速度。
2. 项目快速启动
环境准备
- 确保安装了 PyTorch(版本 >=2.5)。可以使用以下命令安装 PyTorch 2.6:
pip install torch==2.6 torchvision==0.21 torchaudio==2.6
安装 Nunchaku
一旦 PyTorch 环境配置完成,你可以从我们的 Hugging Face 仓库直接安装 Nunchaku。确保选择与你的 Python 和 PyTorch 版本兼容的 wheel 文件。例如,对于 Python 3.11 和 PyTorch 2.6,可以使用以下命令:
pip install https://huggingface.co/mit-han-lab/nunchaku/resolve/main/nunchaku-0.1.4+torch2.6-cp311-cp311-linux_x86_64.whl
注意
- NVFP4 的 wheel 文件目前不可用,因为 PyTorch 尚未正式支持 CUDA 11.8。要使用 NVFP4,你需要拥有 Blackwell GPU(例如 50-series GPU)并从源代码构建。
3. 应用案例和最佳实践
以下是使用 Nunchaku 的一些应用案例和最佳实践:
- 4-bit 文本编码器和逐层 CPU 卸载:通过支持 4-bit 文本编码器和逐层 CPU 卸载,可以降低 FLUX 的最低内存要求至仅 4 GiB,同时保持 2-3× 的速度提升。
- 自定义 LoRA 转换:ComfyUI 工作流现在支持自定义 LoRA 转换,以及模型量化和 FLUX.1-Tools。
- 深度到图像演示:我们的深度到图像演示已上线,您可以尝试一下。
4. 典型生态项目
- ComfyUI:用于简化模型配置和交互的用户界面。
- DeepCompressor:用于模型量化的库,与 Nunchaku 合作,可以进一步优化模型大小和性能。
- FLUX.1-Tools:提供模型转换和量化的工具集,与 Nunchaku 引擎配合使用,可达到更高的性能。
以上就是关于 Nunchaku 项目的基本介绍和快速启动指南。希望这些信息能帮助您顺利上手并充分利用 Nunchaku 项目的强大功能。