Transformers-RL: 探索强化学习与Transformer的深度融合

Transformers-RL: 探索强化学习与Transformer的深度融合

项目地址:https://gitcode.com/gh_mirrors/tr/Transformers-RL

项目介绍

Transformers-RL 是一个基于PyTorch的开源项目,它旨在简化Transformer模型在强化学习(Reinforcement Learning, RL)中的应用。该项目由一位对Transformer和RL有深入理解的开发者创建,因为在现有资源中找不到易于理解和实施的Transformer-for-RL示例,他决定自己动手实现。这个项目的核心是将TransformerXL的稳定版本(GTrXL块)以及其他相关层封装到layers.py中,并提供了一个基本的高斯策略在policies.py中。

项目技术分析

TransformerXL块:项目实现了TransformerXL的稳定版本,这是对Transformer结构的一种扩展,解决了标准Transformer在长序列处理上的局限性。通过引入相对位置编码和循环状态,TransformerXL能够在更长的时间尺度上捕获依赖关系,这对于强化学习中的长期规划尤为关键。

政策网络:在policies.py文件中,作者提供了一个基础的高斯策略,适应连续动作空间的RL问题。这种策略使得智能体能够基于环境反馈以概率分布的形式选择行动,有助于探索复杂的环境。

项目及技术应用场景

Transformers-RL 可广泛应用于各种强化学习场景,特别是那些需要长时间序列信息处理的问题,如游戏AI、机器人控制、自动驾驶等。例如,机器人在复杂环境中导航时,需要记住过去的经验以便做出更好的决策,这正是TransformerXL的优势所在。此外,对于具有连续动作空间的任务,项目内置的高斯策略可以有效地进行探索与利用。

项目特点

  1. 易用性:项目代码结构清晰,易于理解和复用。即便对Transformer或强化学习不熟悉的新手也能快速上手。
  2. 灵活性:支持自定义政策,方便用户根据不同任务的需求扩展其他类型的策略。
  3. 创新性集成:首次将TransformerXL稳定版与强化学习相结合,为解决RL中的长序列问题提供了新思路。
  4. 社区友好:鼓励用户提交Pull Request,共同完善和丰富项目内容。

综上所述,Transformers-RL是一个值得尝试的项目,无论你是对Transformer感兴趣的机器学习研究者,还是希望在实践中提升智能体性能的开发者。通过这个项目,你可以轻松地将Transformer的强大能力融入到你的强化学习算法中,挖掘潜在的高性能解决方案。

Transformers-RL An easy PyTorch implementation of "Stabilizing Transformers for Reinforcement Learning" 项目地址: https://gitcode.com/gh_mirrors/tr/Transformers-RL

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值