基于Transformer的强化学习(TRL)是一种利用Transformer模型架构来改进和增强强化学习算法性能的方法。
这种方法通过结合Transformer模型强大的表示能力和强化学习的决策优化框架,显著提升了智能体的学习能力和适应能力,为我们解决复杂环境下的决策问题提供了新的思路,因此也被广泛应用于各大领域。
目前,TRL主要有两大发展方向:架构增强、轨迹优化。
-
架构增强:通过改进Transformer的架构来提高强化学习模型的性能。
-
轨迹优化:使用Transformer来优化强化学习中的轨迹数据,以更好地建模人类偏好和非Markovian奖励。
今天我从这两大方向入手,分享29篇TRL的代表性成果,为方便同学们理解,这其中还包含了TRL在自动驾驶等主要领域的热门应用,希望对大家找idea有所帮助。
论文原文以及开源代码需要的同学看文末
1.架构增强
将Transformer结构融入强化学习框架,以提升对状态、动作和历史信息的建模能力,从而精确地表示智能体与环境间的复杂关系。
代表性论文:
Coberl: Contrastive bert for reinforcement learning
方法:COBERL是一种结合了对比学习与架构改进的新型强化学习代理,通过自监督学习目标和LSTM与transformer的组合,提高了数据效率并在各种环境中取得了改进的性能。
<