Swin3D: 用于3D稀疏任务的开源变换器
项目基础介绍
Swin3D 是由微软开源的一个基于变换器的3D稀疏任务处理框架。该项目主要是使用 Cuda 和 Python 进行开发,充分利用了深度学习中的变换器(Transformer)架构来处理三维空间数据。Swin3D 旨在为3D室内场景理解任务提供一种预训练的变换器骨架,已经在多种下游任务中取得了超越现有方法的性能。
编程语言
- Cuda
- Python
核心功能
Swin3D 的核心功能是基于三维 Swin 变换器,该变换器专门为在稀疏体素上进行自我关注(self-attention)而设计。它具有线性内存复杂度,能够高效地捕捉点信号的 irregularity(不规则性)通过泛化的上下文相对位置嵌入(generalized contextual relative positional embedding)。
主要特点包括:
- 稀疏体素处理:通过精心设计的网络结构,Swin3D 可以有效地对稀疏体素数据进行处理。
- 预训练模型:在 Structured3D 数据集上预训练的大型模型,为多种三维室内场景理解任务提供了强大的基础。
- 广泛的任务适应性:经过预训练的 Swin3D 模型可以适应包括语义分割、3D检测等多种任务。
最近更新的功能
根据项目最近的更新,以下是一些新增的功能和改进:
- 增加了新的预训练模型:在 Structured3D 数据集上,提供了带有不同 cRSE(contextual relative positional embedding)设置的预训练模型。
- 性能提升:通过调整模型结构和训练策略,提升了在 ScanNet 和 S3DIS 数据集上的性能。
- 代码和文档完善:对代码库进行了优化,同时更新了相关文档,以帮助用户更快地搭建和运行模型。
Swin3D 的这些更新进一步提升了模型在各种三维室内场景理解任务中的性能,为相关领域的研究和应用提供了有力的工具。