StockNet 项目使用教程

StockNet 项目使用教程

stocknet-codeCode for stock movement prediction from tweets and historical stock prices. 项目地址:https://gitcode.com/gh_mirrors/st/stocknet-code

1. 项目的目录结构及介绍

StockNet 项目的目录结构如下:

stocknet-code/
├── data/
│   ├── preprocessed/
│   ├── raw/
│   └── README.md
├── models/
│   ├── README.md
│   └── stocknet.py
├── notebooks/
│   ├── data_preprocessing.ipynb
│   └── model_training.ipynb
├── scripts/
│   ├── preprocess_data.py
│   └── train_model.py
├── config.yaml
├── LICENSE
├── README.md
└── requirements.txt

目录介绍

  • data/: 存放原始数据和预处理后的数据。

    • preprocessed/: 预处理后的数据文件。
    • raw/: 原始数据文件。
    • README.md: 数据目录的说明文档。
  • models/: 存放模型相关的文件。

    • README.md: 模型目录的说明文档。
    • stocknet.py: StockNet 模型的实现代码。
  • notebooks/: 存放 Jupyter Notebook 文件,用于数据预处理和模型训练。

    • data_preprocessing.ipynb: 数据预处理 Notebook。
    • model_training.ipynb: 模型训练 Notebook。
  • scripts/: 存放脚本文件,用于数据预处理和模型训练。

    • preprocess_data.py: 数据预处理脚本。
    • train_model.py: 模型训练脚本。
  • config.yaml: 项目的配置文件。

  • LICENSE: 项目的许可证文件。

  • README.md: 项目的说明文档。

  • requirements.txt: 项目依赖的 Python 包列表。

2. 项目的启动文件介绍

项目的启动文件主要是 scripts/ 目录下的脚本文件:

  • preprocess_data.py: 用于数据预处理的启动脚本。
  • train_model.py: 用于模型训练的启动脚本。

启动脚本的使用方法

数据预处理
python scripts/preprocess_data.py
模型训练
python scripts/train_model.py

3. 项目的配置文件介绍

项目的配置文件是 config.yaml,它包含了项目运行所需的各种配置参数。

配置文件示例

data_path: "data/raw"
preprocessed_path: "data/preprocessed"
model_path: "models/stocknet.py"
batch_size: 32
epochs: 10
learning_rate: 0.001

配置参数说明

  • data_path: 原始数据文件的路径。
  • preprocessed_path: 预处理后的数据文件的路径。
  • model_path: 模型文件的路径。
  • batch_size: 批处理大小。
  • epochs: 训练轮数。
  • learning_rate: 学习率。

通过修改 config.yaml 文件中的参数,可以调整项目的运行配置。

stocknet-codeCode for stock movement prediction from tweets and historical stock prices. 项目地址:https://gitcode.com/gh_mirrors/st/stocknet-code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁楠烈Hubert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值