StockNet 项目使用教程
1. 项目的目录结构及介绍
StockNet 项目的目录结构如下:
stocknet-code/
├── data/
│ ├── preprocessed/
│ ├── raw/
│ └── README.md
├── models/
│ ├── README.md
│ └── stocknet.py
├── notebooks/
│ ├── data_preprocessing.ipynb
│ └── model_training.ipynb
├── scripts/
│ ├── preprocess_data.py
│ └── train_model.py
├── config.yaml
├── LICENSE
├── README.md
└── requirements.txt
目录介绍
-
data/
: 存放原始数据和预处理后的数据。preprocessed/
: 预处理后的数据文件。raw/
: 原始数据文件。README.md
: 数据目录的说明文档。
-
models/
: 存放模型相关的文件。README.md
: 模型目录的说明文档。stocknet.py
: StockNet 模型的实现代码。
-
notebooks/
: 存放 Jupyter Notebook 文件,用于数据预处理和模型训练。data_preprocessing.ipynb
: 数据预处理 Notebook。model_training.ipynb
: 模型训练 Notebook。
-
scripts/
: 存放脚本文件,用于数据预处理和模型训练。preprocess_data.py
: 数据预处理脚本。train_model.py
: 模型训练脚本。
-
config.yaml
: 项目的配置文件。 -
LICENSE
: 项目的许可证文件。 -
README.md
: 项目的说明文档。 -
requirements.txt
: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件主要是 scripts/
目录下的脚本文件:
preprocess_data.py
: 用于数据预处理的启动脚本。train_model.py
: 用于模型训练的启动脚本。
启动脚本的使用方法
数据预处理
python scripts/preprocess_data.py
模型训练
python scripts/train_model.py
3. 项目的配置文件介绍
项目的配置文件是 config.yaml
,它包含了项目运行所需的各种配置参数。
配置文件示例
data_path: "data/raw"
preprocessed_path: "data/preprocessed"
model_path: "models/stocknet.py"
batch_size: 32
epochs: 10
learning_rate: 0.001
配置参数说明
data_path
: 原始数据文件的路径。preprocessed_path
: 预处理后的数据文件的路径。model_path
: 模型文件的路径。batch_size
: 批处理大小。epochs
: 训练轮数。learning_rate
: 学习率。
通过修改 config.yaml
文件中的参数,可以调整项目的运行配置。