Transformers.js 使用教程

Transformers.js 使用教程

项目地址:https://gitcode.com/gh_mirrors/tr/transformers.js

项目介绍

Transformers.js 是一个基于 JavaScript 的开源库,允许用户在浏览器中直接运行预训练的机器学习模型。这个项目由 Hugging Face 提供支持,旨在让前端开发者能够轻松地集成和使用先进的自然语言处理(NLP)模型。

项目快速启动

安装

首先,你需要通过 npm 安装 Transformers.js:

npm install @xenova/transformers

基本使用

以下是一个简单的示例,展示如何在 JavaScript 中使用 Transformers.js 进行情感分析:

import { pipeline } from '@xenova/transformers';

async function analyzeSentiment() {
  let pipe = await pipeline('sentiment-analysis');
  let out = await pipe('I love transformers!');
  console.log(out); // [{'label': 'POSITIVE', 'score': 0.999817686}]
}

analyzeSentiment();

应用案例和最佳实践

文本生成

使用 distilgpt2 模型进行文本生成:

let pipe = await pipeline('text-generation', 'distilgpt2');
let out = await pipe('Once upon a time');
console.log(out); // 生成的文本

问答系统

使用 distilbert-base-uncased-distilled-squad 模型进行问答:

let pipe = await pipeline('question-answering', 'distilbert-base-uncased-distilled-squad');
let out = await pipe({
  question: 'What is the capital of France?',
  context: 'Paris is the capital of France.'
});
console.log(out); // {'answer': 'Paris', 'score': 0.9998}

典型生态项目

Hugging Face Hub

Transformers.js 与 Hugging Face Hub 紧密集成,允许用户直接从 Hub 下载和使用各种预训练模型。这为开发者提供了丰富的资源和灵活性。

Gradio

Gradio 是一个用于快速创建和共享机器学习模型界面的库。结合 Transformers.js,你可以创建交互式的 Web 应用,让用户实时体验模型的功能。

通过以上内容,你应该能够快速上手并开始使用 Transformers.js 进行各种自然语言处理任务。

transformers.js State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server! transformers.js 项目地址: https://gitcode.com/gh_mirrors/tr/transformers.js

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

范靓好Udolf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值