Transformers.js 使用教程
项目地址:https://gitcode.com/gh_mirrors/tr/transformers.js
项目介绍
Transformers.js 是一个基于 JavaScript 的开源库,允许用户在浏览器中直接运行预训练的机器学习模型。这个项目由 Hugging Face 提供支持,旨在让前端开发者能够轻松地集成和使用先进的自然语言处理(NLP)模型。
项目快速启动
安装
首先,你需要通过 npm 安装 Transformers.js:
npm install @xenova/transformers
基本使用
以下是一个简单的示例,展示如何在 JavaScript 中使用 Transformers.js 进行情感分析:
import { pipeline } from '@xenova/transformers';
async function analyzeSentiment() {
let pipe = await pipeline('sentiment-analysis');
let out = await pipe('I love transformers!');
console.log(out); // [{'label': 'POSITIVE', 'score': 0.999817686}]
}
analyzeSentiment();
应用案例和最佳实践
文本生成
使用 distilgpt2
模型进行文本生成:
let pipe = await pipeline('text-generation', 'distilgpt2');
let out = await pipe('Once upon a time');
console.log(out); // 生成的文本
问答系统
使用 distilbert-base-uncased-distilled-squad
模型进行问答:
let pipe = await pipeline('question-answering', 'distilbert-base-uncased-distilled-squad');
let out = await pipe({
question: 'What is the capital of France?',
context: 'Paris is the capital of France.'
});
console.log(out); // {'answer': 'Paris', 'score': 0.9998}
典型生态项目
Hugging Face Hub
Transformers.js 与 Hugging Face Hub 紧密集成,允许用户直接从 Hub 下载和使用各种预训练模型。这为开发者提供了丰富的资源和灵活性。
Gradio
Gradio 是一个用于快速创建和共享机器学习模型界面的库。结合 Transformers.js,你可以创建交互式的 Web 应用,让用户实时体验模型的功能。
通过以上内容,你应该能够快速上手并开始使用 Transformers.js 进行各种自然语言处理任务。