PyTorch下的MANO手部模型实现指南
MANO A PyTorch Implementation of MANO hand model. 项目地址: https://gitcode.com/gh_mirrors/ma/MANO
项目介绍
MANO (Mesh-based Anthropomorphic Hand Outline) 是一个高度逼真且低维的手部模型,由Javier Romero等在SIGGRAPH ASIA 2017上提出。此模型能够将手部姿态参数(关节角度和根位置)和形状参数映射到3D手部网格中,适合于任何人类手型的模拟。本项目由Omid Taheri开发,提供了基于PyTorch的MANO模型加载器,实现了对SMPLX包的依赖,并便于集成至如GrabNet等模型中,以生成未见过的3D物体的真实手抓取。
项目快速启动
首先,确保您的环境中安装了Python和PyTorch 1.5.1以上版本。若未安装PyTorch,可以通过以下命令进行CPU环境的安装:
pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
对于GPU环境,直接从该GitHub仓库安装PyTorch及MANO:
pip install git+https://github.com/otaheri/MANO
接下来,下载MANO模型,需先在MANO官方网站注册并下载MANO_RIGHT.pkl
和MANO_LEFT.pkl
放入项目指定路径下,例如models/mano/
。
然后,您可以使用以下代码来快速启动手部模型的实例化与渲染:
import torch
from mano.load import load as mano_load
from mano.utils import Mesh
model_path = 'PATH_TO_YOUR_MANO_MODELS'
n_comps = 45
batch_size = 10
rh_model = mano_load(model_path=model_path, is_rhand=True, num_pca_comps=n_comps, batch_size=batch_size)
betas = torch.rand(batch_size, 10)
pose = torch.rand(batch_size, n_comps)
global_orient = torch.rand(batch_size, 3)
transl = torch.rand(batch_size, 3)
output = rh_model(betas=betas, global_orient=global_orient, hand_pose=pose, transl=transl, return_verts=True, return_tips=True)
# 显示手部网格
hand_meshes = rh_model.hand_meshes(output)
hand_meshes[0].show()
应用案例与最佳实践
MANO模型广泛应用于人机交互、虚拟现实、动作识别等领域。在GrabNet模型中,它被用来生成未知3D物体的逼真抓握动作。最佳实践包括优化手部姿势估计,结合深度学习算法,实时处理输入的骨架数据或捕捉图像,精准重建出手部的3D形态。
典型生态项目
MANO模型因其灵活性和实用性,已成为多个研究与商业项目的基础,比如:
- GrabNet: 利用MANO生成复杂而自然的手部抓取动作,适用于增强现实和机器人技术。
- Hand Pose Estimation: 在AR/VR应用中,许多手部追踪系统采用MANO模型作为后端,解析出视频流中的手部姿态。
- 人体运动捕获系统: 结合全身的人体模型,MANO模型帮助构建更为完整的人体动画体验。
通过这些项目,MANO模型展示了其在复杂数字环境中捕捉和合成手部动作的强大能力。
以上即为基于https://github.com/otaheri/MANO.git
项目的基本使用教程,希望您在探索手部建模和相关应用时找到灵感与便利。
MANO A PyTorch Implementation of MANO hand model. 项目地址: https://gitcode.com/gh_mirrors/ma/MANO