Drive-WM 开源项目使用教程
1. 项目的目录结构及介绍
Drive-WM/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── core/
│ └── utils/
├── configs/
│ ├── default.yaml
│ └── custom.yaml
├── scripts/
│ ├── train.py
│ ├── evaluate.py
│ └── predict.py
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- data/: 存放项目的数据文件,包括处理后的数据 (
processed/
) 和原始数据 (raw/
)。 - models/: 存放项目的模型代码,包括核心模型 (
core/
) 和工具函数 (utils/
)。 - configs/: 存放项目的配置文件,包括默认配置 (
default.yaml
) 和自定义配置 (custom.yaml
)。 - scripts/: 存放项目的脚本文件,包括训练脚本 (
train.py
)、评估脚本 (evaluate.py
) 和预测脚本 (predict.py
)。 - README.md: 项目的说明文档。
- requirements.txt: 项目的依赖包列表。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
scripts/train.py
train.py
是项目的启动文件,用于训练模型。可以通过以下命令启动训练:
python scripts/train.py --config configs/default.yaml
参数说明
--config
: 指定配置文件路径,默认使用configs/default.yaml
。
3. 项目的配置文件介绍
configs/default.yaml
default.yaml
是项目的默认配置文件,包含了模型的基本配置参数。以下是部分配置项的介绍:
model:
name: "Drive-WM"
input_size: 256
output_size: 256
training:
batch_size: 32
epochs: 100
learning_rate: 0.001
data:
path: "data/processed"
split: 0.8
配置项介绍
- model: 模型的配置项,包括模型名称 (
name
)、输入尺寸 (input_size
) 和输出尺寸 (output_size
)。 - training: 训练的配置项,包括批量大小 (
batch_size
)、训练轮数 (epochs
) 和学习率 (learning_rate
)。 - data: 数据的配置项,包括数据路径 (
path
) 和数据分割比例 (split
)。
通过修改 default.yaml
文件中的配置项,可以自定义模型的训练参数。