LibRecommender: 强大的端到端推荐系统框架

LibRecommender: 强大的端到端推荐系统框架

项目地址:https://gitcode.com/gh_mirrors/li/LibRecommender

项目介绍

LibRecommender 是一个易于使用的推荐系统库,专注于简化推荐流程的每一个环节。该框架包含训练 (libreco) 和服务 (libserving) 模块,让开发者能够迅速训练及部署各类推荐算法模型。主要特性包括对流行算法的支持(如 FM、DIN、LightGCN 等),混合推荐系统设计,允许结合协同过滤与基于内容特征,动态地添加新功能,低内存占用,支持稀疏表示转换,以及对显式与隐式数据集的训练,并带有负采样能力。此外,它提供了一站式的推荐工作流,从数据处理到模型评估、保存加载直至服务化部署。

项目快速启动

要快速体验 LibRecommender,首先确保已安装必要的依赖项,之后可以通过以下步骤开始:

安装LibRecommender

使用 pip 安装是最便捷的方式:

pip install -U LibRecommender

示例代码

这里以 LightGCN 算法为例,展示如何快速训练和预测:

import pandas as pd
from libreco.data import random_split, DatasetPure
from libreco.algorithms import LightGCN
from libreco.evaluation import evaluate

# 加载并预处理数据
data = pd.read_csv("path_to_your_data.csv", sep="::", names=["user", "item", "label"])
train_data, _, _ = random_split(data, multi_ratios=[0.8, 0.1, 0.1])

# 构建数据集
data_info = DatasetPure.build_trainset(train_data)
lightgcn = LightGCN(task="ranking", data_info=data_info, embed_size=16, n_epochs=3)

# 训练模型
lightgcn.fit(train_data, neg_sampling=True, verbose=2)

# 测试模型性能
test_data = DatasetPure.build_testset(train_data)  # 假设我们继续使用训练数据的一部分作为测试
evaluate(model=lightgcn, data=test_data, metrics=["loss", "roc_auc"])

# 预测用户对物品的偏好
print(lightgcn.predict(user=2211, item=110))

记得替换 "path_to_your_data.csv" 为你的实际数据路径,并调整数据列名以匹配你的数据集结构。

应用案例和最佳实践

在实际应用中,LibRecommender 能够灵活地应用于电子商务、新闻推荐、视频推荐等多种场景。一个最佳实践是,利用其混合推荐系统的特性,结合用户行为数据与内容元数据,例如,通过加入用户的年龄、性别等特征增强推荐的个性化。这要求对DatasetFeat类进行适当配置,如下所示:

# 在导入其他必要的包后...
from libreco.data import split_by_ratio_chrono, DatasetFeat

# 数据准备和模型训练类似,但在构建数据集时需指定更多特征相关参数
data = pd.read_csv("your_combined_data.csv")
train_data, test_data = split_by_ratio_chrono(data, test_size=0.2)
sparse_col = ["feature1", "feature2"]
dense_col = ["density_feature"]
user_col = ["user_profile"]
item_col = ["item_features"]

data_info = DatasetFeat.build_trainset(train_data, user_col, item_col, sparse_col, dense_col)
ytb_ranking = YouTubeRanking(task="ranking", data_info=data_info, embed_size=16)
ytb_ranking.fit(train_data, neg_sampling=True, eval_data=test_data, epochs=3)

典型生态项目

LibRecommender 的生态系统围绕着推荐系统的开发和优化展开,支持与大数据处理工具(如 Hadoop、Spark)的集成,以及深度学习框架(TensorFlow、PyTorch)的紧密配合。虽然该项目本身未直接列出典型的生态合作伙伴,但它与数据分析、机器学习的现代栈高度兼容,便于在大型分布式系统中实施。开发者可以根据需求,结合如 Elasticsearch 或 Redis 进行高效的在线推荐服务,或者使用 Kubernetes 进行容器化管理,以实现高可用的服务环境。


以上即为 LibRecommender 开源项目的简介、快速启动指南、应用案例概述及生态合作的一般性讨论。请注意,具体实践时应详细阅读官方文档,以便获取最新信息和高级功能使用指导。

LibRecommender Versatile End-to-End Recommender System LibRecommender 项目地址: https://gitcode.com/gh_mirrors/li/LibRecommender

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛炯典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值