推荐系统遇上深度学习(一二五)-[阿里]CTR预估中的端到端用户行为检索

本文介绍了阿里提出的端到端用户行为检索模型ETA,用于解决CTR预估中两阶段用户行为检索的目标不一致问题。ETA模型采用SimHash和Hamming Distance进行高效检索,结合Multi-Head Target Attention进行加权行为向量表示,实现在长用户行为序列中的兴趣建模,提高了预测准确性和线上效率。
摘要由CSDN通过智能技术生成

b1b2da7b1d5bc5913e94748e3b266218.png

今天给大家带来一篇阿里在长用户行为序列建模中的探索,前面也介绍过SIM和UBR4CTR两篇论文,均是通过两阶段检索的思路,从长用户行为序列中选择与目标item相关的用户行为,用于后续的决策。那么针对这种两阶段的方式中存在的阶段目标不一致的问题,本论文提出了一种端到端用户行为检索方法,一起来看一下。

1、背景

CTR预估中,用户行为建模算是一种里程碑式的进展。首先简单回顾一下用户行为建模的发展思路。最初的方法使用sum/avg pooling、RNN、CNN的方式对用户行为进行处理,这些方法对于不同的目标item,处理后得到的行为向量表示都是相同的。DIN中,针对用户行为所表现出的Diversity和Local activation两个特性,使用注意力机制显式建模目标item和用户历史行为中的item的相关性,并进行加权pooling得到行为向量表示。DIEN在DIN的基础上,进一步通过GRU建模了用户兴趣的演进过程。但由于线上耗时的限制,DIN和DIEN仅能处理长度较短的用户行为序列。而在电商等场景下,用户的行为序列往往是比较长的,那么仅使用最近的部分行为序列,仅能建模用户的短期兴趣,无法对用户长期、周期、固有的兴趣进行建模,因此MIMN使用记忆网络对长用户行为进行建模。更进一步,SIM和UBR4CTR通过一种两阶段的方式,实现了用户终身行为序列建模。

对于SIM和UBR4CTR的两阶段方式,首先在第一阶段,通过检索的方式,从用户行为序列中选择与目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值