MetaMath 项目使用教程

MetaMath 项目使用教程

MetaMath MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models MetaMath 项目地址: https://gitcode.com/gh_mirrors/me/MetaMath

1. 项目介绍

MetaMath 是一个用于生成数学问题的大型语言模型(LLM)项目。该项目旨在通过自举方式生成数学问题,以提升模型的数学推理能力。MetaMath 提供了多种模型,包括 MetaMath-7B、MetaMath-13B 和 MetaMath-70B,这些模型在 GSM8k 和 MATH 基准测试中表现优异,超越了现有的开源 LLM 模型。

2. 项目快速启动

2.1 克隆项目

首先,克隆 MetaMath 项目到本地:

git clone https://github.com/meta-math/MetaMath.git
cd MetaMath

2.2 安装依赖

安装项目所需的 Python 包:

pip install -r requirements.txt

如果遇到 Ray 安装问题,请运行以下命令:

pip install --upgrade ray
pip install --upgrade pyarrow
pip install pandas

2.3 加载数据集

使用以下命令加载数据集:

from datasets import load_dataset
dataset = load_dataset("meta-math/MetaMathQA")

2.4 模型训练

准备 LLaMA-2 基础模型和 MetaMathQA 数据集,然后运行以下命令进行训练:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch --master_addr $[MASTER_ADDR] --master_port $[MASTER_PORT] --nproc_per_node=8 --use_env train_math.py \
  --model_name_or_path "meta-llama/Llama-2-7b-hf" \
  --data_path "path/to/metamathqa" \
  --data_length 10000000 \
  --bf16 True \
  --output_dir "path/to/save" \
  --num_train_epochs 3 \
  --per_device_train_batch_size 4 \
  --per_device_eval_batch_size 4 \
  --gradient_accumulation_steps 4 \
  --evaluation_strategy "no" \
  --save_strategy "steps" \
  --save_steps 1000 \
  --save_total_limit 2 \
  --learning_rate 2e-5 \
  --weight_decay 0 \
  --warmup_ratio 0.03 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --fsdp "full_shard auto_wrap" \
  --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
  --tf32 True

3. 应用案例和最佳实践

3.1 数学问题生成

MetaMath 可以用于生成各种数学问题,适用于教育、研究和测试等领域。例如,可以生成复杂的代数问题、几何问题和概率统计问题。

3.2 模型评估

使用 vllm 进行快速生成和评估:

python eval_gsm8k.py --model "path/to/save" --data_file /data/test/GSM8K_test.jsonl
python eval_math.py --model "path/to/save" --data_file /data/test/MATH_test.jsonl

4. 典型生态项目

4.1 Hugging Face Transformers

MetaMath 使用了 Hugging Face 的 Transformers 库,这是一个广泛使用的自然语言处理库,支持多种预训练模型和自定义模型的训练。

4.2 Ray

Ray 是一个用于分布式计算的框架,MetaMath 使用 Ray 来加速模型训练和数据处理。

4.3 PyTorch

MetaMath 基于 PyTorch 框架进行模型训练和推理,PyTorch 是一个流行的深度学习框架,提供了丰富的工具和库。

通过以上步骤,您可以快速启动并使用 MetaMath 项目,生成和评估数学问题,提升模型的数学推理能力。

MetaMath MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models MetaMath 项目地址: https://gitcode.com/gh_mirrors/me/MetaMath

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余鹤赛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值