MetaMath 项目使用教程
1. 项目介绍
MetaMath 是一个用于生成数学问题的大型语言模型(LLM)项目。该项目旨在通过自举方式生成数学问题,以提升模型的数学推理能力。MetaMath 提供了多种模型,包括 MetaMath-7B、MetaMath-13B 和 MetaMath-70B,这些模型在 GSM8k 和 MATH 基准测试中表现优异,超越了现有的开源 LLM 模型。
2. 项目快速启动
2.1 克隆项目
首先,克隆 MetaMath 项目到本地:
git clone https://github.com/meta-math/MetaMath.git
cd MetaMath
2.2 安装依赖
安装项目所需的 Python 包:
pip install -r requirements.txt
如果遇到 Ray 安装问题,请运行以下命令:
pip install --upgrade ray
pip install --upgrade pyarrow
pip install pandas
2.3 加载数据集
使用以下命令加载数据集:
from datasets import load_dataset
dataset = load_dataset("meta-math/MetaMathQA")
2.4 模型训练
准备 LLaMA-2 基础模型和 MetaMathQA 数据集,然后运行以下命令进行训练:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch --master_addr $[MASTER_ADDR] --master_port $[MASTER_PORT] --nproc_per_node=8 --use_env train_math.py \
--model_name_or_path "meta-llama/Llama-2-7b-hf" \
--data_path "path/to/metamathqa" \
--data_length 10000000 \
--bf16 True \
--output_dir "path/to/save" \
--num_train_epochs 3 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0 \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
3. 应用案例和最佳实践
3.1 数学问题生成
MetaMath 可以用于生成各种数学问题,适用于教育、研究和测试等领域。例如,可以生成复杂的代数问题、几何问题和概率统计问题。
3.2 模型评估
使用 vllm 进行快速生成和评估:
python eval_gsm8k.py --model "path/to/save" --data_file /data/test/GSM8K_test.jsonl
python eval_math.py --model "path/to/save" --data_file /data/test/MATH_test.jsonl
4. 典型生态项目
4.1 Hugging Face Transformers
MetaMath 使用了 Hugging Face 的 Transformers 库,这是一个广泛使用的自然语言处理库,支持多种预训练模型和自定义模型的训练。
4.2 Ray
Ray 是一个用于分布式计算的框架,MetaMath 使用 Ray 来加速模型训练和数据处理。
4.3 PyTorch
MetaMath 基于 PyTorch 框架进行模型训练和推理,PyTorch 是一个流行的深度学习框架,提供了丰富的工具和库。
通过以上步骤,您可以快速启动并使用 MetaMath 项目,生成和评估数学问题,提升模型的数学推理能力。