RD-Agent 开源项目教程
1. 项目介绍
RD-Agent 是由微软开发的一个开源自动化研发工具,旨在提高工业研发效率,特别是在数据驱动的人工智能时代。该项目通过自动化高价值通用研发过程,让AI能够驱动数据驱动的AI发展。RD-Agent 采用了“R”和“D”两个关键组件的框架,分别代表提出新想法和实施这些想法,以实现研发的自动进化,创造工业价值。
2. 项目快速启动
在开始使用 RD-Agent 前,请确保您的系统中已安装了 Docker。以下是基于 Docker 的快速启动步骤:
# 创建一个新的 Conda 环境
conda create -n rdagent python=3.10
# 激活环境
conda activate rdagent
# 安装 RD-Agent 包
pip install rdagent
# 运行健康检查
rdagent health_check
在安装完 RD-Agent 包后,需要对环境进行配置。例如,如果您使用 OpenAI API,需要在 .env
文件中配置您的 GPT 模型:
# 配置 OpenAI API
echo "OPENAI_API_KEY=<replace_with_your_openai_api_key>
CHAT_MODEL=gpt-4-turbo" > .env
完成环境配置后,您可以运行以下命令启动应用:
# 运行应用(以下命令根据不同的应用案例有所不同)
rdagent <command>
3. 应用案例和最佳实践
以下是一些 RD-Agent 的应用案例和最佳实践:
自动量化交易及迭代因子进化
使用 rdagent fin_factor
命令启动基于 Qlib 的自我循环因子提议和实施应用。
自动量化交易及迭代模型进化
使用 rdagent fin_model
命令启动基于 Qlib 的自我循环模型提议和实施应用。
自动医疗预测模型进化
- 在 PhysioNet 申请账户。
- 请求访问 FIDDLE 预处理数据集。
- 将您的用户名和密码放入
.env
文件中。
# 配置 .env 文件
echo "DM_USERNAME=<your_username>
DM_PASSWORD=<your_password>" >> .env
# 运行医疗模型
rdagent med_model
自动量化交易及财务报告因子提取
运行以下命令启动基于财务报告的 Qlib 因子提取和实施应用:
# 下载财务报告数据
wget https://github.com/SunsetWolf/rdagent_resource/releases/download/reports/all_reports.zip
unzip all_reports.zip -d git_ignore_folder/reports
# 运行财务报告因子提取
rdagent fin_factor_report --report_folder=git_ignore_folder/reports
自动模型研究与发展协作
使用以下命令提取和实施模型:
# 运行自己的论文或报告
rdagent general_model <Your paper URL>
# 例如
rdagent general_model "https://arxiv.org/pdf/2210.09789"
4. 典型生态项目
RD-Agent 的生态项目包括但不限于:
- Qlib:一个面向量化投资的机器学习平台。
- PhysioNet:一个用于生理信号研究的开放资源库。
- FIDDLE Dataset:用于医疗预测模型的预处理数据集。
以上教程将帮助您快速上手 RD-Agent,并在实际项目中应用这一强大的自动化研发工具。