RD-Agent 开源项目教程

RD-Agent 开源项目教程

RD-Agent Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automating these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which lets AI drive data-driven AI. RD-Agent 项目地址: https://gitcode.com/gh_mirrors/rd/RD-Agent

1. 项目介绍

RD-Agent 是由微软开发的一个开源自动化研发工具,旨在提高工业研发效率,特别是在数据驱动的人工智能时代。该项目通过自动化高价值通用研发过程,让AI能够驱动数据驱动的AI发展。RD-Agent 采用了“R”和“D”两个关键组件的框架,分别代表提出新想法和实施这些想法,以实现研发的自动进化,创造工业价值。

2. 项目快速启动

在开始使用 RD-Agent 前,请确保您的系统中已安装了 Docker。以下是基于 Docker 的快速启动步骤:

# 创建一个新的 Conda 环境
conda create -n rdagent python=3.10

# 激活环境
conda activate rdagent

# 安装 RD-Agent 包
pip install rdagent

# 运行健康检查
rdagent health_check

在安装完 RD-Agent 包后,需要对环境进行配置。例如,如果您使用 OpenAI API,需要在 .env 文件中配置您的 GPT 模型:

# 配置 OpenAI API
echo "OPENAI_API_KEY=<replace_with_your_openai_api_key>
CHAT_MODEL=gpt-4-turbo" > .env

完成环境配置后,您可以运行以下命令启动应用:

# 运行应用(以下命令根据不同的应用案例有所不同)
rdagent <command>

3. 应用案例和最佳实践

以下是一些 RD-Agent 的应用案例和最佳实践:

自动量化交易及迭代因子进化

使用 rdagent fin_factor 命令启动基于 Qlib 的自我循环因子提议和实施应用。

自动量化交易及迭代模型进化

使用 rdagent fin_model 命令启动基于 Qlib 的自我循环模型提议和实施应用。

自动医疗预测模型进化

  1. 在 PhysioNet 申请账户。
  2. 请求访问 FIDDLE 预处理数据集。
  3. 将您的用户名和密码放入 .env 文件中。
# 配置 .env 文件
echo "DM_USERNAME=<your_username>
DM_PASSWORD=<your_password>" >> .env

# 运行医疗模型
rdagent med_model

自动量化交易及财务报告因子提取

运行以下命令启动基于财务报告的 Qlib 因子提取和实施应用:

# 下载财务报告数据
wget https://github.com/SunsetWolf/rdagent_resource/releases/download/reports/all_reports.zip
unzip all_reports.zip -d git_ignore_folder/reports

# 运行财务报告因子提取
rdagent fin_factor_report --report_folder=git_ignore_folder/reports

自动模型研究与发展协作

使用以下命令提取和实施模型:

# 运行自己的论文或报告
rdagent general_model <Your paper URL>

# 例如
rdagent general_model "https://arxiv.org/pdf/2210.09789"

4. 典型生态项目

RD-Agent 的生态项目包括但不限于:

  • Qlib:一个面向量化投资的机器学习平台。
  • PhysioNet:一个用于生理信号研究的开放资源库。
  • FIDDLE Dataset:用于医疗预测模型的预处理数据集。

以上教程将帮助您快速上手 RD-Agent,并在实际项目中应用这一强大的自动化研发工具。

RD-Agent Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automating these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which lets AI drive data-driven AI. RD-Agent 项目地址: https://gitcode.com/gh_mirrors/rd/RD-Agent

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任蜜欣Honey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值