背景
在现代工业中,研发(R&D)对于提高工业生产力至关重要,尤其是在人工智能时代,研发的核心方面主要集中在数据和模型上。
RD Agent 旨在自动化这些高价值的通用研发流程,让AI驱动数据驱动的AI。
数据驱动的AI「数据驱动的AI」这个概念指的是在人工智能(AI)系统中,数据是核心和驱动力,用于训练模型、优化算法和做出决策。
所以这个框架是的对于不是进行数据驱动的科研之外暂时没有太好的应用案例,但是其原理我们可以学习借鉴一下。
两个 Agent
从方法论上讲,RD Agent 提出了一个由两个关键部分组成的自主代理框架:(R)esearch 代表通过提出新想法来积极探索,(D)开发代表实现这些想法。这两个组成部分的有效性最终会通过实践得到反馈,双方的研发能力都可以在过程中不断学习和成长。
框架和组件
RDAgent 整体框架
上图显示了 RDAgent 的整体框架。
大致流程如下(注意两个专家角色的职责和交互):
-
数据专家在日常研发过程中,
-
提出一个假设(例如,像 RNN 这样的模型结构可以捕获时间序列数据中的模式),
-
设计实验(例如,金融数据包含时间序列,我们可以在这种情况下验证假设),
-
研发专家将实验实现为代码(例如 Pytorch 模型结构),
-
然后执行代码以获得反馈(例如 指标、损失曲线等)。
-
数据专家从反馈中学习,并在下一次迭代中改进。
这个基本的方法框架,不断提出假设、验证它们并从现实世界获得反馈。 这也是我们知道的第一个支持与实际验证链接的科研自动化框架。
对详细代码感兴趣的话,可以看看下面的工作流,展示了框架主要的类的交互:
论文
- 《以数据为中心的自动开发的协作式发展战略》[1]
还可以看看这个论文,了解更多的细节:
Co-STEER 是一种处理以数据为中心的开发 (AD2) 任务并突出其主要挑战的方法,这些挑战需要专家般的实施(即从实践中学习领域知识)和任务调度能力(例如,从更简单的任务开始以提高整体效率),这些领域在很大程度上被以前的工作所忽视。我们的 Co-STEER 代理通过我们不断发展的策略来增强其领域知识,并通过收集和使用特定领域的实践经验来提高其调度和实施技能。有了更好的时间表,实施就会变得更快。同时,随着实施反馈变得更加详细,调度准确性也会提高。这两项功能通过实际反馈共同发展,从而实现协作式发展过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。