RLtime:引领实时强化学习的新时代

RLtime:引领实时强化学习的新时代

rltime RLtime is a reinforcement learning library focused on state-of-the-art q-learning algorithms and features rltime 项目地址: https://gitcode.com/gh_mirrors/rl/rltime

项目介绍

RLtime 是一个专注于实时环境交互的强化学习库,目前支持 PyTorch。它不仅集成了多种先进的 Q-learning 算法,还特别优化了低延迟动作和样本高效训练的需求。无论你是研究者、开发者还是数据科学家,RLtime 都能为你提供强大的工具,帮助你在复杂的实时环境中实现高效的强化学习。

项目技术分析

支持的策略与特性

RLtime 支持多种先进的强化学习策略,包括:

  • DQN (Deep Q Networks)
  • IQN (Implicit Quantile Networks)
  • Distributional DQN / C51
  • Actor Critic (支持 A2C 和 PPO 训练)

此外,RLtime 还支持多种先进的特性,如:

  • Rainbow 特性(除 noisy nets 外):
    • Double Q-Learning
    • Dueling Networks
    • Multi-Step Targets
    • Prioritized Replay
  • R2D2 特性
    • Value Function Rescaling
    • Weighted multi-step/multi-env prioritized replay
    • Stored recurrent state
    • Recurrent state burn-in

动态模型配置

RLtime 支持使用 JSON 文件进行动态模型布局配置,并提供了扩展语法,方便引用和嵌入其他 JSON 文件和 Python 类型。

Atari 结果

通过将 IQN 与 LSTM 模型结合,并加入 Rainbow 和 R2D2 特性,RLtime 在 Atari 基准测试中取得了领先的成绩(样本效率为 200M 帧):

| 算法 | 中位数归一化得分 | |----------------|------------------| | Impala Deep | 192% | | QR-DQN-1 | 211% | | IQN | 218% | | Rainbow | 230% | | Recurrent IQN | 365%* |

* 在 57 个 Atari-57 游戏中,有 55 个游戏取得了这一成绩,每个游戏单次运行

安装与使用

RLtime 的安装非常简单,只需几行命令即可完成:

git clone https://github.com/opherlieber/rltime.git
cd rltime
pip install -e .

对于 TensorBoard 日志记录,需要安装 PyTorch 1.1+ 和 TensorBoard 1.14+:

pip install tensorboard Pillow

使用 RLtime 进行训练和评估也非常直观:

# 训练配置
python -um rltime.train cartpole_ppo.json
# 使用特定环境训练配置
python -um rltime.train atari_iqn_lstm.json --env BreakoutNoFrameskip-v4

# 评估训练结果
python -um rltime.eval <result_dir> --num-envs 32 --episodes 100

# 实时渲染评估结果
python -um rltime.eval <result_dir> --num-envs 4 --episodes 10 --render

项目及技术应用场景

RLtime 适用于多种应用场景,特别是在需要低延迟动作和高效样本训练的实时环境中。以下是一些典型的应用场景:

  • 游戏开发:在实时游戏中实现智能代理,提升游戏体验。
  • 机器人控制:在机器人控制领域,实现高效的实时决策。
  • 自动驾驶:在自动驾驶系统中,优化实时决策和路径规划。
  • 金融交易:在金融市场中,实现高效的实时交易策略。

项目特点

1. 支持多种先进算法

RLtime 不仅支持传统的 DQN 和 Actor Critic 算法,还集成了最新的 IQN 和 Rainbow 特性,确保你在各种场景中都能找到合适的算法。

2. 实时环境优化

特别针对实时环境进行了优化,确保在低延迟和高样本效率的情况下,仍能保持出色的性能。

3. 灵活的模型配置

通过 JSON 文件进行动态模型配置,支持引用和嵌入其他 JSON 文件和 Python 类型,极大地提高了模型的灵活性和可扩展性。

4. 分布式计算支持

RLtime 支持分布式计算,特别是通过 Ray 实现的高吞吐量异步/分布式动作,虽然目前仍处于实验阶段,但已经展示了其强大的潜力。

5. 历史缓冲区分离

RLtime 实现了动作/训练与历史缓冲区的完全分离,支持在线历史、回放和优先级回放等多种历史缓冲区,确保训练过程的高效和灵活。

结语

RLtime 是一个功能强大且灵活的强化学习库,特别适合在实时环境中进行高效的强化学习。无论你是研究者还是开发者,RLtime 都能为你提供强大的工具,帮助你在复杂的实时环境中实现高效的强化学习。赶快尝试一下,体验 RLtime 带来的强大功能吧!


引用项目

如果你在研究或工作中使用了 RLtime,请引用此项目:

@misc{rltime,
  author = {Lieber, Opher},
  title = {RLtime: A reinforcement learning library for state-of-the-art q-learning},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/opherlieber/rltime}},
}

rltime RLtime is a reinforcement learning library focused on state-of-the-art q-learning algorithms and features rltime 项目地址: https://gitcode.com/gh_mirrors/rl/rltime

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁乐钧Gwendolyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值