Deep-OC-SORT 开源项目使用教程
Deep-OC-SORT https://arxiv.org/abs/2302.11813 项目地址: https://gitcode.com/gh_mirrors/de/Deep-OC-SORT
1. 项目介绍
Deep-OC-SORT 是一个基于深度学习的多行人跟踪项目,由 Gerard Maggiolino、Adnan Ahmad、Jinkun Cao 和 Kris Kitani 开发。该项目在 MOT17 和 MOT20 数据集上表现优异,尤其是在 HOTA 指标上排名第一。Deep-OC-SORT 通过自适应重识别技术,显著提升了多行人跟踪的性能。
2. 项目快速启动
2.1 环境准备
确保你的环境满足以下要求:
- Python 3.8
- Ubuntu 18.04
2.2 安装依赖
首先,克隆项目到本地:
git clone https://github.com/GerardMaggiolino/Deep-OC-SORT.git
cd Deep-OC-SORT
然后,安装外部依赖:
cd external/YOLOX/
pip install -r requirements.txt && python setup.py develop
cd ../../external/deep-person-reid/
pip install -r requirements.txt && python setup.py develop
cd ../../external/fast_reid/
pip install -r docs/requirements.txt
2.3 数据准备
将 MOT17/20 和 DanceTrack 数据集放置在以下目录结构中:
data
|——————mot (MOT17)
| └——————train
| └——————test
|——————MOT20
| └——————train
| └——————test
|——————dancetrack
| └——————train
| └——————test
| └——————val
然后运行以下命令转换数据格式:
python3 data/tools/convert_mot17_to_coco.py
python3 data/tools/convert_mot20_to_coco.py
python3 data/tools/convert_dance_to_coco.py
2.4 运行项目
运行 MOT17/20 和 DanceTrack 的基线测试:
exp=baseline
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset mot17
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset mot20 --track_thresh 0.4
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset dance --aspect_ratio_thresh 1000
3. 应用案例和最佳实践
3.1 应用案例
Deep-OC-SORT 可以广泛应用于视频监控、自动驾驶、体育分析等领域。例如,在视频监控中,可以通过该系统实时跟踪多个行人,提高监控效率和准确性。
3.2 最佳实践
- 参数调优:根据具体应用场景调整
--track_thresh
和--aspect_ratio_thresh
等参数,以获得最佳跟踪效果。 - 数据预处理:确保输入数据格式正确,并进行必要的预处理,以提高模型性能。
4. 典型生态项目
- YOLOX: 用于目标检测,是 Deep-OC-SORT 的重要依赖。
- deep-person-reid: 用于行人重识别,提升跟踪系统的准确性。
- fast_reid: 用于快速重识别,加速跟踪过程。
通过这些生态项目的协同工作,Deep-OC-SORT 能够实现高效、准确的多行人跟踪。
Deep-OC-SORT https://arxiv.org/abs/2302.11813 项目地址: https://gitcode.com/gh_mirrors/de/Deep-OC-SORT