Deep-OC-SORT 开源项目使用教程

Deep-OC-SORT 开源项目使用教程

Deep-OC-SORT https://arxiv.org/abs/2302.11813 Deep-OC-SORT 项目地址: https://gitcode.com/gh_mirrors/de/Deep-OC-SORT

1. 项目介绍

Deep-OC-SORT 是一个基于深度学习的多行人跟踪项目,由 Gerard Maggiolino、Adnan Ahmad、Jinkun Cao 和 Kris Kitani 开发。该项目在 MOT17 和 MOT20 数据集上表现优异,尤其是在 HOTA 指标上排名第一。Deep-OC-SORT 通过自适应重识别技术,显著提升了多行人跟踪的性能。

2. 项目快速启动

2.1 环境准备

确保你的环境满足以下要求:

  • Python 3.8
  • Ubuntu 18.04

2.2 安装依赖

首先,克隆项目到本地:

git clone https://github.com/GerardMaggiolino/Deep-OC-SORT.git
cd Deep-OC-SORT

然后,安装外部依赖:

cd external/YOLOX/
pip install -r requirements.txt && python setup.py develop

cd ../../external/deep-person-reid/
pip install -r requirements.txt && python setup.py develop

cd ../../external/fast_reid/
pip install -r docs/requirements.txt

2.3 数据准备

将 MOT17/20 和 DanceTrack 数据集放置在以下目录结构中:

data
|——————mot (MOT17)
| └——————train
| └——————test
|——————MOT20
| └——————train
| └——————test
|——————dancetrack
| └——————train
| └——————test
| └——————val

然后运行以下命令转换数据格式:

python3 data/tools/convert_mot17_to_coco.py
python3 data/tools/convert_mot20_to_coco.py
python3 data/tools/convert_dance_to_coco.py

2.4 运行项目

运行 MOT17/20 和 DanceTrack 的基线测试:

exp=baseline
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset mot17
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset mot20 --track_thresh 0.4
python3 main.py --exp_name $exp --post --emb_off --cmc_off --aw_off --new_kf_off --grid_off --dataset dance --aspect_ratio_thresh 1000

3. 应用案例和最佳实践

3.1 应用案例

Deep-OC-SORT 可以广泛应用于视频监控、自动驾驶、体育分析等领域。例如,在视频监控中,可以通过该系统实时跟踪多个行人,提高监控效率和准确性。

3.2 最佳实践

  • 参数调优:根据具体应用场景调整 --track_thresh--aspect_ratio_thresh 等参数,以获得最佳跟踪效果。
  • 数据预处理:确保输入数据格式正确,并进行必要的预处理,以提高模型性能。

4. 典型生态项目

  • YOLOX: 用于目标检测,是 Deep-OC-SORT 的重要依赖。
  • deep-person-reid: 用于行人重识别,提升跟踪系统的准确性。
  • fast_reid: 用于快速重识别,加速跟踪过程。

通过这些生态项目的协同工作,Deep-OC-SORT 能够实现高效、准确的多行人跟踪。

Deep-OC-SORT https://arxiv.org/abs/2302.11813 Deep-OC-SORT 项目地址: https://gitcode.com/gh_mirrors/de/Deep-OC-SORT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯宜伶Ernestine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值