Memobase 使用教程

Memobase 使用教程

memobase Profile-Based Long-Term Memory for AI Applications memobase 项目地址: https://gitcode.com/gh_mirrors/me/memobase

1. 项目介绍

Memobase 是一个基于用户档案的记忆系统,旨在为生成式人工智能(GenAI)应用带来长期用户记忆。无论是构建虚拟伴侣、教育工具还是个性化助手,Memobase 都能赋予您的 AI 记忆、理解和随着用户成长的能力。

Memobase 提供了结构化的用户档案,能够记录用户的语言、婚姻状况、教育背景、兴趣、心理特征和职业等信息,从而让 AI 更好地理解和服务于用户。

2. 项目快速启动

环境准备

在开始之前,确保您已经安装了 Python 环境。

安装 Memobase

通过以下命令安装 Memobase Python SDK:

pip install memobase

启动 Memobase 后端

您需要准备以下两个东西来继续:

  • 项目 URL。默认为 http://localhost:8019
  • 项目令牌。默认为 secret

初始化 Memobase 客户端

在您的 Python 代码中,初始化 Memobase 客户端并连接到后端:

from memobase import MemoBaseClient, ChatBlob

mb = MemoBaseClient(
    project_url='http://localhost:8019',
    api_key='secret'
)

assert mb.ping()

管理用户

创建、更新和获取用户信息:

# 添加用户
uid = mb.add_user({"any_key": "any_value"})

# 更新用户信息
mb.update_user(uid, {"any_key": "any_value2"})

# 获取用户信息
user = mb.get_user(uid)
print(user)

插入数据

在 Memobase 中,所有类型的数据都是以 blob 的形式存在的,您可以插入、获取和删除这些数据:

# 插入数据
messages = [
    {"role": "user", "content": "Hello, I'm Gus"},
    {"role": "assistant", "content": "Hi, nice to meet you, Gus!"}
]

bid = user.insert(ChatBlob(messages=messages))
print(user.get(bid))

# 默认情况下,Memobase 处理完数据后会移除 blobs。
# user.delete(bid)

获取用户记忆

# 刷新并获取记忆
user.flush()

# 获取用户档案
print(user.profile(need_json=True))

3. 应用案例和最佳实践

用户记忆集成

将用户档案集成到您的 AI 提示中,以便更好地理解用户:

context = user.context(max_token_size=500, prefer_topics=["basic_info"])
print(context)

用户分析和跟踪

通过分析用户对话,记录用户偏好和行为:

profiles = user.profile()

def under_age_30(p):
    return p.sub_topic == "age" and int(p.content) < 30

def love_cat(p):
    return p.topic == "interest" and p.sub_topic == "pets" and "cat" in p.content

is_user_under_30 = len([p for p in profiles if under_age_30(p)]) > 0
is_user_love_cat = len([p for p in profiles if love_cat(p)]) > 0

推荐产品

根据用户职业推荐相应的产品:

def pick_an_ad(profiles):
    work_titles = [p for p in profiles if p.topic == "work" and p.sub_topic == "title"]
    if not work_titles:
        return None
    wt = work_titles[0].content
    if wt == "Software Engineer":
        return "Deep Learning Stuff"
    elif wt == "some job":
        return "some ads"

4. 典型生态项目

Memobase 可以与各种 AI 应用集成,例如聊天机器人、个性化教育工具等,形成一个强大的生态系统。通过记录和分析用户数据,这些项目可以更好地适应用户需求,提供更个性化的服务。

memobase Profile-Based Long-Term Memory for AI Applications memobase 项目地址: https://gitcode.com/gh_mirrors/me/memobase

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云云乐Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值