Memobase:开源AI长期记忆系统,让AI真正记住每个用户的秘密武器

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🤖 “你的AI还健忘吗?这款开源神器让机器人秒变读心专家!”

大家好,我是蚝油菜花。你是否也经历过这些AI尴尬时刻?

  • 👉 昨天刚说过不吃辣,推荐的餐厅全是川湘菜
  • 👉 每次咨询都要重复公司规模和预算
  • 👉 教育AI永远记不住学生的学习进度…

今天要揭秘的Memobase,正在掀起AI记忆革命!这个斩获3.2k星的开源项目,通过三大黑科技让AI真正记住你:

  • ✅ 时间感知记忆:像人类一样理解"上周喜欢咖啡,这周改喝茶"
  • ✅ 非嵌入式系统:处理百万用户数据,响应速度提升5倍
  • ✅ 用户画像自进化:自动生成「爱健身的90后CEO」「二次元医学生」等立体画像

已有教育机构用它打造「最懂学生的AI助教」,电商平台靠它实现推荐转化率提升70%——你的AI准备好拥有超强记忆力了吗?

🚀 快速阅读

Memobase 是一个开源的长期记忆系统,旨在为生成式 AI 提供用户记忆支持。

  1. 核心功能:支持时间感知记忆、灵活配置和高效批处理,适用于大规模用户场景。
  2. 技术原理:通过缓冲区与内存刷新机制、非嵌入式记忆系统等技术实现低延迟响应和快速读写。

Memobase 是什么

memobase

Memobase 是一个开源的长期记忆系统,专为生成式 AI 应用设计。它通过结构化的用户信息存储和灵活的配置选项,帮助 AI 记住用户的基本信息、兴趣爱好和行为习惯,从而提供个性化的交互体验。无论是虚拟助手、教育工具还是用户行为分析,Memobase 都能显著提升 AI 的智能化水平。

Memobase 的独特之处在于其时间感知记忆功能和非嵌入式记忆系统。通过时间戳记录事件序列,确保 AI 不会受到过时信息的干扰;同时,其高效的批处理能力支持大规模用户场景,满足企业级需求。

Memobase 的主要功能

  • 用户记忆管理:为每个用户创建独立的长期记忆档案,记录基本信息、兴趣爱好和行为习惯。
  • 时间感知记忆:记录事件的时间戳,支持事件序列存储和检索,避免过时信息干扰。
  • 灵活的配置:开发者可根据需求选择性地存储和使用不同类型的记忆。
  • 易于集成:提供 API 和多种语言的 SDK(如 Python、Node.js、Go),快速与现有系统集成。
  • 批量处理与高效性能:支持高并发和大规模用户场景,快速处理大量数据。

Memobase 的技术原理

memobase-starter

  • 用户画像构建:基于用户与 AI 的交互数据提取关键信息,构建结构化的用户画像。
  • 缓冲区与内存刷新机制:使用缓冲区暂存最近的用户数据,当数据量达到阈值或闲置时间过长时自动刷新到长期记忆中。
  • 非嵌入式记忆系统:通过非嵌入式系统实现高效处理和存储,确保低延迟响应。
  • 事件序列与时间感知:为每个记忆数据添加时间戳,支持事件序列存储和检索。
  • 灵活的配置与扩展性:开发者可通过配置文件或 API 接口自定义记忆类型、存储方式和更新频率。

如何运行 Memobase

1. 启动 Memobase 后端

启动 Memobase 后端服务后,您需要以下两项信息继续操作:

  1. 项目 URL,默认为 http://localhost:8019
  2. 项目 Token,默认为 secret

2. 安装 Python SDK

通过以下命令安装 Memobase 的 Python SDK:

pip install memobase

3. 确保连接成功

使用以下代码测试与 Memobase 的连接:

from memobase import MemoBaseClient

mb = MemoBaseClient(
    project_url=PROJECT_URL,
    api_key=PROJECT_TOKEN,
)
assert mb.ping()

4. 管理用户

通过以下代码添加、更新和获取用户信息:

uid = mb.add_user({"any_key": "any_value"})
mb.update_user(uid, {"any_key": "any_value2"})
u = mb.get_user(uid)
print(u)

5. 插入数据

将用户数据插入 Memobase:

messages = [
    {
        "role": "user",
        "content": "Hello, I'm Gus",
    },
    {
        "role": "assistant",
        "content": "Hi, nice to meet you, Gus!",
    }
]
bid = u.insert(ChatBlob(messages=messages))
print(u.get(bid))  # 数据未刷新前可获取

6. 获取记忆

调用 flush() 方法将缓冲区数据刷新到长期记忆中,并查看用户画像:

u.flush()
print(u.profile())
# 输出示例:[UserProfile(topic="basic_info", sub_topic="name", content="Gus",...)]

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值