Hierarchical 3D Gaussians开源项目教程

Hierarchical 3D Gaussians开源项目教程

hierarchical-3d-gaussians Official implementation of the SIGGRAPH 2024 paper "A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets" hierarchical-3d-gaussians 项目地址: https://gitcode.com/gh_mirrors/hi/hierarchical-3d-gaussians

1. 项目介绍

Hierarchical 3D Gaussians是一个用于实时渲染非常大的数据集的开源项目。该项目提出了一种分层3D高斯表示方法,可以在不牺牲质量的情况下,提高大型数据集的渲染效率。这种方法特别适用于需要处理大量数据的应用场景,如虚拟现实、游戏和可视化等。

2. 项目快速启动

环境准备

在开始之前,请确保您的系统已经安装了以下依赖:

  • CMake 3.22.1
  • gcc/g++ 11.4.0 或 Visual Studio 2019
  • CUDA (11.8, 12.1 或 12.5)
  • COLMAP 3.9.1(仅用于预处理)
  • Python 3.12 环境及相关的包

克隆项目

使用以下命令克隆项目:

git clone https://github.com/graphdeco-inria/hierarchical-3d-gaussians.git --recursive
cd hierarchical-3d-gaussians

配置Python环境

创建并激活一个新的conda环境:

conda create -n hierarchical_3d_gaussians python=3.12 -y
conda activate hierarchical_3d_gaussians

安装必要的Python包:

# 根据CUDA版本选择相应的包
pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt

下载权重文件

为了启用深度损失,需要下载以下模型权重之一:

编译层次结构生成器和合并器

cd submodules/gaussianhierarchy
cmake . -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build -j --config Release
cd ../..

编译实时查看器

对于Ubuntu 22.04,安装依赖:

sudo apt install -y cmake libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev

克隆层次结构查看器并构建:

cd SIBR_viewers
git clone https://github.com/graphdeco-inria/hierarchy-viewer.git src/projects/hierarchyviewer
cmake . -B build -DCMAKE_BUILD_TYPE=Release -DBUILD_IBR_HIERARCHYVIEWER=ON -DBUILD_IBR_ULR=OFF -DBUILD_IBR_DATASET_TOOLS=OFF -DBUILD_IBR_GAUSSIANVIEWER=OFF
cmake --build build -j --target install --config Release

3. 应用案例和最佳实践

  • 虚拟现实应用:使用Hierarchical 3D Gaussians进行大型虚拟环境的实时渲染。
  • 游戏开发:利用该项目提高游戏场景的渲染效率,尤其是在处理复杂和大规模环境时。
  • 科学可视化:为科学研究提供高效的数据可视化工具,特别是在需要处理大量数据点的场景中。

4. 典型生态项目

  • COLMAP:用于预处理输入图像,生成相机参数和点云数据。
  • PyTorch:用于优化和训练模型。
  • OpenCV:用于图像处理和计算。

以上是Hierarchical 3D Gaussians项目的简要教程,希望对您有所帮助。

hierarchical-3d-gaussians Official implementation of the SIGGRAPH 2024 paper "A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets" hierarchical-3d-gaussians 项目地址: https://gitcode.com/gh_mirrors/hi/hierarchical-3d-gaussians

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/f1ead55c4354 以下标题“H5页面模板源码,很不错的例子”暗示了我们讨论的主题是关于HTML5页面模板的源代码。HTML5是现代网页开发的核心技术,它提供了丰富的功能和元素,让开发者能够构建出更具交互性、动态性和响应式的网页。“很不错的例子”表明这些源码不仅具有实用性,还具备一定的教学意义,既可以作为项目开发的直接素材,也能供学习参考。 在描述“H5页面模板源码,非常酷炫的HTML5模板,可以直接使用,也可以参考学习”中,“非常酷炫”意味着这些模板可能融合了诸多高级特性,例如动画效果、媒体元素的运用以及响应式设计等,这些都是HTML5技术的优势所在。可以直接使用表明用户无需从零开始编写代码,能迅速搭建出吸引人的网页。同时,这些模板也适合学习,用户通过查看源代码可以了解特定设计和功能的实现方式,从而提升自身的HTML5开发能力。 标签“H5 手机网页 H5源代码 手机html”进一步明确了主题。“H5”是HTML5的简称,“手机网页”和“手机html”则强调这些模板是针对移动设备优化的。在如今移动优先的时代,适应各种屏幕尺寸和触摸操作的网页设计极为重要。这表明这些源码很可能是响应式的,能够根据设备自动调整布局,以适配手机、平板电脑等多种设备。 从“压缩包文件的文件名称列表”来看,虽然无法直接从文件名得知具体源码内容,但可以推测这些文件可能包含多种HTML5模板示例。“不错的样子.txt”可能是一个介绍或说明文件,对模板进行简要描述或提供使用指南。而“1-30”这样的命名方式可能意味着有30个不同的模板实例,每个模板对应一个独立文件,涵盖多种设计风格和功能,为学习和实践提供了全面的平台。 总的来说,这个资源集合为HTML5开发者或初学者提供了一套实用且酷炫的移动网页模板源代码。这些模板既可以直接应用于项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶准鑫Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值