Hierarchical 3D Gaussians开源项目教程
1. 项目介绍
Hierarchical 3D Gaussians是一个用于实时渲染非常大的数据集的开源项目。该项目提出了一种分层3D高斯表示方法,可以在不牺牲质量的情况下,提高大型数据集的渲染效率。这种方法特别适用于需要处理大量数据的应用场景,如虚拟现实、游戏和可视化等。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- CMake 3.22.1
- gcc/g++ 11.4.0 或 Visual Studio 2019
- CUDA (11.8, 12.1 或 12.5)
- COLMAP 3.9.1(仅用于预处理)
- Python 3.12 环境及相关的包
克隆项目
使用以下命令克隆项目:
git clone https://github.com/graphdeco-inria/hierarchical-3d-gaussians.git --recursive
cd hierarchical-3d-gaussians
配置Python环境
创建并激活一个新的conda环境:
conda create -n hierarchical_3d_gaussians python=3.12 -y
conda activate hierarchical_3d_gaussians
安装必要的Python包:
# 根据CUDA版本选择相应的包
pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt
下载权重文件
为了启用深度损失,需要下载以下模型权重之一:
- Depth Anything V2:从Depth-Anything-V2-Large下载,并将其放置在
submodules/Depth-Anything-V2/checkpoints/
目录下。 - DPT:从dpt_large-midas-2f21e586.pt下载,并将其放置在
submodules/DPT/weights/
目录下。
编译层次结构生成器和合并器
cd submodules/gaussianhierarchy
cmake . -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build -j --config Release
cd ../..
编译实时查看器
对于Ubuntu 22.04,安装依赖:
sudo apt install -y cmake libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev
克隆层次结构查看器并构建:
cd SIBR_viewers
git clone https://github.com/graphdeco-inria/hierarchy-viewer.git src/projects/hierarchyviewer
cmake . -B build -DCMAKE_BUILD_TYPE=Release -DBUILD_IBR_HIERARCHYVIEWER=ON -DBUILD_IBR_ULR=OFF -DBUILD_IBR_DATASET_TOOLS=OFF -DBUILD_IBR_GAUSSIANVIEWER=OFF
cmake --build build -j --target install --config Release
3. 应用案例和最佳实践
- 虚拟现实应用:使用Hierarchical 3D Gaussians进行大型虚拟环境的实时渲染。
- 游戏开发:利用该项目提高游戏场景的渲染效率,尤其是在处理复杂和大规模环境时。
- 科学可视化:为科学研究提供高效的数据可视化工具,特别是在需要处理大量数据点的场景中。
4. 典型生态项目
- COLMAP:用于预处理输入图像,生成相机参数和点云数据。
- PyTorch:用于优化和训练模型。
- OpenCV:用于图像处理和计算。
以上是Hierarchical 3D Gaussians项目的简要教程,希望对您有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考