面部关键点检测项目教程

面部关键点检测项目教程

facial-landmark-detection-hrnet A TensorFlow implementation of HRNet for facial landmark detection. facial-landmark-detection-hrnet 项目地址: https://gitcode.com/gh_mirrors/fa/facial-landmark-detection-hrnet

1. 项目介绍

项目概述

facial-landmark-detection-hrnet 是一个基于 TensorFlow 实现的面部关键点检测项目,使用了 HRNet(High-Resolution Network)模型。该项目支持多种公开数据集,如 WFLW 和 IBUG,并提供了数据增强、模型优化等功能。

主要特性

  • 多数据集支持:支持 WFLW、IBUG 等公开数据集。
  • 高级模型架构:采用 HRNet v2 架构。
  • 数据增强:随机缩放、旋转和翻转。
  • 模型优化:支持量化和剪枝。

2. 项目快速启动

安装

首先,克隆项目到本地:

git clone --recursive https://github.com/yinguobing/facial-landmark-detection-hrnet.git

生成训练数据

项目支持多种公开面部关键点数据集。你可以使用以下命令生成训练数据:

git clone https://github.com/yinguobing/face-mesh-generator.git
git checkout features/export_for_mark_regression

使用 generate_mesh_dataset.py 模块生成训练数据。

训练模型

train.py 模块中设置模型名称和关键点数量:

name = "hrnetv2"
number_marks = 98

设置训练和测试数据集路径:

train_files_dir = "/path/to/wflw_train"
test_files_dir = "/path/to/wflw_test"

开始训练:

python3 train.py --epochs=80 --batch_size=32

模型评估

训练完成后,运行 evaluate.py 进行评估:

python3 evaluate.py

模型导出

导出模型以便后续使用:

python3 train.py --export_only=True

3. 应用案例和最佳实践

应用案例

  • 人脸识别:面部关键点检测可用于人脸识别系统中,提高识别精度。
  • 表情分析:通过关键点检测,可以分析用户的表情变化。
  • 虚拟试妆:在虚拟试妆应用中,关键点检测可以帮助准确地定位面部特征。

最佳实践

  • 数据增强:在训练过程中使用数据增强技术,可以提高模型的泛化能力。
  • 模型优化:使用量化和剪枝技术,可以减少模型大小并提高推理速度。

4. 典型生态项目

相关项目

生态系统

这些项目共同构成了一个完整的面部关键点检测生态系统,涵盖了从数据生成、模型训练到应用部署的各个环节。

facial-landmark-detection-hrnet A TensorFlow implementation of HRNet for facial landmark detection. facial-landmark-detection-hrnet 项目地址: https://gitcode.com/gh_mirrors/fa/facial-landmark-detection-hrnet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郎沙圣Sebastian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值