面部关键点检测项目教程
1. 项目介绍
项目概述
facial-landmark-detection-hrnet
是一个基于 TensorFlow 实现的面部关键点检测项目,使用了 HRNet(High-Resolution Network)模型。该项目支持多种公开数据集,如 WFLW 和 IBUG,并提供了数据增强、模型优化等功能。
主要特性
- 多数据集支持:支持 WFLW、IBUG 等公开数据集。
- 高级模型架构:采用 HRNet v2 架构。
- 数据增强:随机缩放、旋转和翻转。
- 模型优化:支持量化和剪枝。
2. 项目快速启动
安装
首先,克隆项目到本地:
git clone --recursive https://github.com/yinguobing/facial-landmark-detection-hrnet.git
生成训练数据
项目支持多种公开面部关键点数据集。你可以使用以下命令生成训练数据:
git clone https://github.com/yinguobing/face-mesh-generator.git
git checkout features/export_for_mark_regression
使用 generate_mesh_dataset.py
模块生成训练数据。
训练模型
在 train.py
模块中设置模型名称和关键点数量:
name = "hrnetv2"
number_marks = 98
设置训练和测试数据集路径:
train_files_dir = "/path/to/wflw_train"
test_files_dir = "/path/to/wflw_test"
开始训练:
python3 train.py --epochs=80 --batch_size=32
模型评估
训练完成后,运行 evaluate.py
进行评估:
python3 evaluate.py
模型导出
导出模型以便后续使用:
python3 train.py --export_only=True
3. 应用案例和最佳实践
应用案例
- 人脸识别:面部关键点检测可用于人脸识别系统中,提高识别精度。
- 表情分析:通过关键点检测,可以分析用户的表情变化。
- 虚拟试妆:在虚拟试妆应用中,关键点检测可以帮助准确地定位面部特征。
最佳实践
- 数据增强:在训练过程中使用数据增强技术,可以提高模型的泛化能力。
- 模型优化:使用量化和剪枝技术,可以减少模型大小并提高推理速度。
4. 典型生态项目
相关项目
- HRNet 官方实现:HRNet/HRNet-Facial-Landmark-Detection
- 面部网格生成器:yinguobing/face-mesh-generator
生态系统
这些项目共同构成了一个完整的面部关键点检测生态系统,涵盖了从数据生成、模型训练到应用部署的各个环节。