Data_Fusion_Course 项目教程
1. 项目的目录结构及介绍
Data_Fusion_Course/
├── README.md
├── requirements.txt
├── setup.py
├── data/
│ ├── raw/
│ └── processed/
├── notebooks/
│ ├── exploratory_analysis.ipynb
│ └── model_training.ipynb
├── src/
│ ├── __init__.py
│ ├── data_processing.py
│ └── model.py
├── config/
│ ├── config.yaml
│ └── logging_config.yaml
└── tests/
├── test_data_processing.py
└── test_model.py
目录结构介绍
- README.md: 项目的基本介绍和使用说明。
- requirements.txt: 项目依赖的Python包列表。
- setup.py: 项目的安装脚本。
- data/: 存放数据文件的目录。
- raw/: 存放原始数据文件。
- processed/: 存放处理后的数据文件。
- notebooks/: 存放Jupyter Notebook文件,用于数据探索和模型训练。
- exploratory_analysis.ipynb: 数据探索分析的Notebook。
- model_training.ipynb: 模型训练的Notebook。
- src/: 存放项目的源代码。
- init.py: 使
src
目录成为一个Python包。 - data_processing.py: 数据处理相关的代码。
- model.py: 模型相关的代码。
- init.py: 使
- config/: 存放项目的配置文件。
- config.yaml: 项目的配置文件。
- logging_config.yaml: 日志配置文件。
- tests/: 存放项目的测试代码。
- test_data_processing.py: 数据处理代码的测试。
- test_model.py: 模型代码的测试。
2. 项目的启动文件介绍
项目的启动文件主要是src/data_processing.py
和src/model.py
。这两个文件分别负责数据处理和模型训练的主要逻辑。
src/data_processing.py
该文件包含了数据预处理的主要函数,例如数据清洗、特征提取等。可以通过以下命令运行该文件:
python src/data_processing.py
src/model.py
该文件包含了模型训练和评估的主要函数。可以通过以下命令运行该文件:
python src/model.py
3. 项目的配置文件介绍
项目的配置文件主要存放在config/
目录下,包括config.yaml
和logging_config.yaml
。
config/config.yaml
该文件包含了项目的各种配置参数,例如数据路径、模型参数等。以下是一个示例:
data_path: "data/raw/"
output_path: "data/processed/"
model_params:
learning_rate: 0.01
epochs: 100
config/logging_config.yaml
该文件包含了日志配置参数,例如日志级别、日志格式等。以下是一个示例:
version: 1
disable_existing_loggers: false
formatters:
simple:
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
loggers:
simpleExample:
level: DEBUG
handlers: [console]
propagate: no
root:
level: DEBUG
handlers: [console]
通过这些配置文件,可以方便地调整项目的运行参数和日志输出。