Data_Fusion_Course 项目教程

Data_Fusion_Course 项目教程

Data_Fusion_Course The solution of the data fusion course of SJTU. MTALAB code for KF/UKF/EKF/PF/FKF/DKF. 数据融合技术,卡尔曼滤波KF/无迹卡尔曼滤波UKF/拓展卡尔曼滤波EKF等的MATLAB实现 Data_Fusion_Course 项目地址: https://gitcode.com/gh_mirrors/da/Data_Fusion_Course

1. 项目的目录结构及介绍

Data_Fusion_Course/
├── README.md
├── requirements.txt
├── setup.py
├── data/
│   ├── raw/
│   └── processed/
├── notebooks/
│   ├── exploratory_analysis.ipynb
│   └── model_training.ipynb
├── src/
│   ├── __init__.py
│   ├── data_processing.py
│   └── model.py
├── config/
│   ├── config.yaml
│   └── logging_config.yaml
└── tests/
    ├── test_data_processing.py
    └── test_model.py

目录结构介绍

  • README.md: 项目的基本介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 项目的安装脚本。
  • data/: 存放数据文件的目录。
    • raw/: 存放原始数据文件。
    • processed/: 存放处理后的数据文件。
  • notebooks/: 存放Jupyter Notebook文件,用于数据探索和模型训练。
    • exploratory_analysis.ipynb: 数据探索分析的Notebook。
    • model_training.ipynb: 模型训练的Notebook。
  • src/: 存放项目的源代码。
    • init.py: 使src目录成为一个Python包。
    • data_processing.py: 数据处理相关的代码。
    • model.py: 模型相关的代码。
  • config/: 存放项目的配置文件。
    • config.yaml: 项目的配置文件。
    • logging_config.yaml: 日志配置文件。
  • tests/: 存放项目的测试代码。
    • test_data_processing.py: 数据处理代码的测试。
    • test_model.py: 模型代码的测试。

2. 项目的启动文件介绍

项目的启动文件主要是src/data_processing.pysrc/model.py。这两个文件分别负责数据处理和模型训练的主要逻辑。

src/data_processing.py

该文件包含了数据预处理的主要函数,例如数据清洗、特征提取等。可以通过以下命令运行该文件:

python src/data_processing.py

src/model.py

该文件包含了模型训练和评估的主要函数。可以通过以下命令运行该文件:

python src/model.py

3. 项目的配置文件介绍

项目的配置文件主要存放在config/目录下,包括config.yamllogging_config.yaml

config/config.yaml

该文件包含了项目的各种配置参数,例如数据路径、模型参数等。以下是一个示例:

data_path: "data/raw/"
output_path: "data/processed/"
model_params:
  learning_rate: 0.01
  epochs: 100

config/logging_config.yaml

该文件包含了日志配置参数,例如日志级别、日志格式等。以下是一个示例:

version: 1
disable_existing_loggers: false
formatters:
  simple:
    format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
  console:
    class: logging.StreamHandler
    level: DEBUG
    formatter: simple
    stream: ext://sys.stdout
loggers:
  simpleExample:
    level: DEBUG
    handlers: [console]
    propagate: no
root:
  level: DEBUG
  handlers: [console]

通过这些配置文件,可以方便地调整项目的运行参数和日志输出。

Data_Fusion_Course The solution of the data fusion course of SJTU. MTALAB code for KF/UKF/EKF/PF/FKF/DKF. 数据融合技术,卡尔曼滤波KF/无迹卡尔曼滤波UKF/拓展卡尔曼滤波EKF等的MATLAB实现 Data_Fusion_Course 项目地址: https://gitcode.com/gh_mirrors/da/Data_Fusion_Course

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙纯茉Norma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值