ImBD 项目使用教程
1. 项目目录结构及介绍
ImBD 项目目录结构如下:
ImBD/
├── ablation_exp/ # 包含了消融实验的代码
├── data/ # 存储项目所需数据集
├── local_infer_ref/ # 包含本地推理代码
├── other_models/ # 存储其他方法的模型代码
├── results/ # 存储实验结果
├── scripts/ # 包含了各种运行脚本的目录
├── spo/ # 包含了风格偏好优化(SPO)的代码
├── tools/ # 包含了工具类代码
├── .gitignore # 指定git忽略的文件
├── LICENSE # 项目许可证信息
├── README.md # 项目说明文件
├── requirements.txt # 项目依赖的Python包列表
ablation_exp/
: 包含进行消融实验所需的代码,用于研究模型中不同组件的影响。data/
: 存储项目所需的数据集,包括训练和测试数据。local_infer_ref/
: 包含本地推理的参考代码,用于在本地环境中进行模型推理。other_models/
: 存储其他检测方法的模型代码,用于比较不同模型的效果。results/
: 存储实验结果,包括模型的性能指标等。scripts/
: 包含运行项目的各种脚本,例如数据预处理、模型训练、评估等。spo/
: 包含风格偏好优化(SPO)的代码,这是项目中的核心算法部分。tools/
: 包含项目所需的工具类代码,如数据构建器等。.gitignore
: 指定在git版本控制中应该忽略的文件和目录。LICENSE
: 项目的开源许可证,本项目采用Apache-2.0许可证。README.md
: 项目的主要说明文件,介绍了项目的相关信息。requirements.txt
: 列出了项目运行所需的Python包依赖。
2. 项目的启动文件介绍
项目的启动主要通过scripts/
目录下的脚本进行。以下是一些主要的启动文件:
download_model.sh
: 用于下载项目所需的预训练模型。run_inference.sh
: 用于运行本地推理,可以对给定的文本进行机器修订文本检测。eval_all.sh
: 用于快速评估模型在所有任务上的性能。train_spo.sh
: 用于训练带有风格偏好优化的gpt-neo-2.7b模型。
根据需要选择相应的脚本运行脚本,通过bash命令执行。
3. 项目的配置文件介绍
项目的配置主要通过requirements.txt
文件进行,该文件列出了项目依赖的Python包。以下是一些配置步骤:
-
创建项目虚拟环境(推荐使用conda):
conda create -n ImBD python=3.10 conda activate ImBD
-
安装项目依赖:
pip install -r requirements.txt
确保在虚拟环境中安装所有依赖,以避免与其他项目产生冲突。在配置过程中可能还需要设置一些环境变量,例如模型下载的API密钥等,这些信息通常在相应的脚本文件中给出指导。