DINOv2 使用教程
项目地址:https://gitcode.com/gh_mirrors/di/dinov2
项目概述
DINOv2 是由 Meta AI(前身为 Facebook AI 研究)开发的一个自监督学习方法的 PyTorch 实现,它专注于在没有监督的情况下学习鲁棒的视觉特征。这个项目基于最初的 DINO 方法并进行了改进,提升了模型在各种计算机视觉任务上的性能,无需微调即可跨域工作。项目托管在 GitHub 上,其地址是 https://github.com/facebookresearch/dinov2.git。
1. 项目目录结构及介绍
DINOV2 的项目结构精心设计以支持清晰的研发流程和易于维护。以下是主要的目录和文件说明:
dinov2/
├── README.md # 项目简介,许可证信息和贡献指南。
├── configs # 配置文件夹,包含了训练和评估模型的yaml配置文件。
│ └── train # 训练相关的配置文件。
│ └── vitl16_short.yaml 示例配置文件。
├── scripts # 脚本文件夹,可能包含数据准备、训练启动脚本等。
├── dinov2 # 核心代码模块,包括模型定义、训练循环逻辑等。
│ ├── model.py # 模型架构定义,如Vision Transformer改造版本。
│ ├── utils.py # 工具函数集合。
├── datasets # 数据集处理相关代码或配置。
│ └── imagenet.py # 例如,ImageNet数据集的处理逻辑。
├── run # 启动脚本所在目录,用于执行训练、评估等。
│ └── train # 包含训练脚本train.py。
└── tests # 测试代码和数据,用于验证代码正确性。
2. 项目启动文件介绍
主要启动文件:train.py
run/train/train.py
是训练 DINOv2 模型的主要脚本。通过这个脚本,用户可以配置不同的参数,比如选择模型大小、设置训练环境、指定输出目录以及数据集路径等,来启动自监督学习过程。该脚本通常接受命令行参数,允许用户灵活地调整训练配置,比如节点数量、配置文件路径、输出目录等。例如,在一个SLURM集群中使用四个节点进行训练,可以通过以下命令简化实现:
python dinov2/run/train/train.py \
--nodes 4 \
--config-file dinov2/configs/train/vitl16_short.yaml \
--output-dir <你的输出目录路径> \
train dataset_path=ImageNet:split=TRAIN:root=<你的数据集根目录>:extra=<额外数据路径>
3. 项目的配置文件介绍
配置文件通常位于 configs
目录下,如 vitl16_short.yaml
。这些YAML文件存储了模型训练的关键参数,包括但不限于:
- 模型类型:例如,ViT-L/16指定了模型为基础的Transformer结构,大型版本, patch size为16。
- 优化器设置:学习率、权重衰减等。
- 训练周期:总迭代次数、预热步骤等。
- 数据集参数:数据集路径、预处理方式。
- 输出与日志:训练日志存放位置、检查点保存策略。
配置文件的每一项都是为了控制训练过程的不同方面,让用户能够不改动代码的情况下,仅通过修改配置就能尝试不同的实验设置。
以上就是DINOv2项目的基本使用教程概览。在深入使用之前,建议仔细阅读项目提供的README文件和配置文档,以便更高效地利用该框架进行实验。