DINOv2 基于自定义数据集进行图片分类预测

本文详细介绍了如何在Python中利用DINOv2模型(如dinov2_vits14)下载预训练权重并提取图片的embedding特征,包括了两种方法:一是直接使用HuggingFace库,二是通过修改DINOV2分类模型进行操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标:获取图片的embedding

一、方法一:下载DINOv2模型

(前提是安装好pytorch)

1. pip安装 

pip install transformers -i https://mirror.baidu.com/pypi/simple

2. 下载dinov2提供的预训练模型,需要自行前往HuggingFace网站上查找dinov2模型进行下载。模型需要下载三个文件:

config.json

preprocessor_config.json

pytorch_model.bin

下载完成后将上述三个文件放置在本地一个名为dinov2_base的文件夹中即可。

from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import torch.nn as nn
import torch

# 定义环境
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")

# 加载dinov2模型
model_folder = './dinov2_base'
processor = AutoImageProcessor.from_pretrained(model_folder)
model = AutoModel.from_pretrained(model_folder).to(device)

# 提取图片特征
image = Image.open('img.jpg')
with torch.no_grad():
    inputs = processor(images=image1, return_tensors="pt").to(device)
    outputs = model(**inputs1)
    image_features = outputs1.last_hidden_state
    image_features = image_features1.mean(dim=1)

二、方法二:安装dinov2包

基于di

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值