开源项目 `LLMs-from-scratch` 使用教程

开源项目 LLMs-from-scratch 使用教程

项目地址:https://gitcode.com/gh_mirrors/ll/LLMs-from-scratch

1. 项目的目录结构及介绍

LLMs-from-scratch/
├── appendix-A/
│   ├── code-part1.ipynb
│   ├── code-part2.ipynb
│   ├── DDP-script.py
│   └── exercise-solutions.ipynb
├── appendix-D/
│   └── appendix-D.ipynb
├── appendix-E/
│   └── appendix-E.ipynb
├── ch01/
├── ch02/
│   ├── ch02.ipynb
│   ├── dataloader.ipynb
│   └── exercise-solutions.ipynb
├── ch03/
│   ├── ch03.ipynb
│   ├── multihead-attention.ipynb
│   └── exercise-solutions.ipynb
├── ch04/
│   ├── ch04.ipynb
│   ├── gpt.py
│   └── exercise-solutions.ipynb
├── ch05/
│   ├── ch05.ipynb
│   ├── gpt_train.py
│   ├── gpt_generate.py
│   └── exercise-solutions.ipynb
├── ch06/
│   ├── ch06.ipynb
│   ├── gpt_class_finetune.py
│   └── exercise-solutions.ipynb
├── ch07/
│   ├── ch07.ipynb
│   ├── gpt_instruction_finetuning.py
│   ├── ollama_evaluate.py
│   └── exercise-solutions.ipynb
├── setup/
│   └── README.md
├── .gitignore
├── LICENSE.txt
├── README.md
└── requirements.txt

目录结构介绍

  • appendix-A/: 包含与PyTorch介绍相关的代码和练习解决方案。
  • appendix-D/: 包含关于训练循环的附加功能的代码。
  • appendix-E/: 包含使用LoRA进行参数高效微调的代码。
  • ch01/ch07/: 每个章节对应的代码和练习解决方案。
  • setup/: 包含项目设置和环境配置的文档。
  • .gitignore: Git忽略文件配置。
  • LICENSE.txt: 项目许可证文件。
  • README.md: 项目的主README文件。
  • requirements.txt: 项目依赖的Python包列表。

2. 项目的启动文件介绍

项目的启动文件主要集中在每个章节的Jupyter Notebook文件中。以下是每个章节的主要启动文件:

  • ch02/ch02.ipynb: 第二章的启动文件,主要介绍文本数据处理。
  • ch03/ch03.ipynb: 第三章的启动文件,主要介绍注意力机制的实现。
  • ch04/ch04.ipynb: 第四章的启动文件,主要介绍从零开始实现GPT模型。
  • ch05/ch05.ipynb: 第五章的启动文件,主要介绍无标签数据的预训练。
  • ch06/ch06.ipynb: 第六章的启动文件,主要介绍文本分类的微调。
  • ch07/ch07.ipynb: 第七章的启动文件,主要介绍指令遵循的微调。

3. 项目的配置文件介绍

  • requirements.txt: 列出了项目运行所需的Python包及其版本。
  • setup/README.md: 提供了项目的环境设置和配置指南,包括Python和相关库的安装说明。

通过以上内容,您可以快速了解并开始使用 LLMs-from-scratch 项目。

LLMs-from-scratch 从零开始逐步指导开发者构建自己的大型语言模型(LLM),旨在提供详细的步骤和原理说明,帮助用户深入理解并实践LLM的开发过程。 LLMs-from-scratch 项目地址: https://gitcode.com/gh_mirrors/ll/LLMs-from-scratch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎鲲才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值