开源项目 LLMs-from-scratch
使用教程
项目地址:https://gitcode.com/gh_mirrors/ll/LLMs-from-scratch
1. 项目的目录结构及介绍
LLMs-from-scratch/
├── appendix-A/
│ ├── code-part1.ipynb
│ ├── code-part2.ipynb
│ ├── DDP-script.py
│ └── exercise-solutions.ipynb
├── appendix-D/
│ └── appendix-D.ipynb
├── appendix-E/
│ └── appendix-E.ipynb
├── ch01/
├── ch02/
│ ├── ch02.ipynb
│ ├── dataloader.ipynb
│ └── exercise-solutions.ipynb
├── ch03/
│ ├── ch03.ipynb
│ ├── multihead-attention.ipynb
│ └── exercise-solutions.ipynb
├── ch04/
│ ├── ch04.ipynb
│ ├── gpt.py
│ └── exercise-solutions.ipynb
├── ch05/
│ ├── ch05.ipynb
│ ├── gpt_train.py
│ ├── gpt_generate.py
│ └── exercise-solutions.ipynb
├── ch06/
│ ├── ch06.ipynb
│ ├── gpt_class_finetune.py
│ └── exercise-solutions.ipynb
├── ch07/
│ ├── ch07.ipynb
│ ├── gpt_instruction_finetuning.py
│ ├── ollama_evaluate.py
│ └── exercise-solutions.ipynb
├── setup/
│ └── README.md
├── .gitignore
├── LICENSE.txt
├── README.md
└── requirements.txt
目录结构介绍
- appendix-A/: 包含与PyTorch介绍相关的代码和练习解决方案。
- appendix-D/: 包含关于训练循环的附加功能的代码。
- appendix-E/: 包含使用LoRA进行参数高效微调的代码。
- ch01/ 至 ch07/: 每个章节对应的代码和练习解决方案。
- setup/: 包含项目设置和环境配置的文档。
- .gitignore: Git忽略文件配置。
- LICENSE.txt: 项目许可证文件。
- README.md: 项目的主README文件。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
项目的启动文件主要集中在每个章节的Jupyter Notebook文件中。以下是每个章节的主要启动文件:
- ch02/ch02.ipynb: 第二章的启动文件,主要介绍文本数据处理。
- ch03/ch03.ipynb: 第三章的启动文件,主要介绍注意力机制的实现。
- ch04/ch04.ipynb: 第四章的启动文件,主要介绍从零开始实现GPT模型。
- ch05/ch05.ipynb: 第五章的启动文件,主要介绍无标签数据的预训练。
- ch06/ch06.ipynb: 第六章的启动文件,主要介绍文本分类的微调。
- ch07/ch07.ipynb: 第七章的启动文件,主要介绍指令遵循的微调。
3. 项目的配置文件介绍
- requirements.txt: 列出了项目运行所需的Python包及其版本。
- setup/README.md: 提供了项目的环境设置和配置指南,包括Python和相关库的安装说明。
通过以上内容,您可以快速了解并开始使用 LLMs-from-scratch
项目。