SVD-LLM:大型语言模型压缩的新方法

SVD-LLM:大型语言模型压缩的新方法

SVD-LLM Official Code for "SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression" SVD-LLM 项目地址: https://gitcode.com/gh_mirrors/sv/SVD-LLM

在当今的人工智能领域,大型语言模型(LLM)的应用日益广泛,但它们庞大的体积限制了实际部署的可行性。为了解决这个问题,模型压缩技术应运而生。今天,我们将介绍一个创新的压缩方法——SVD-LLM。

项目介绍

SVD-LLM是一种基于奇异值分解(SVD)的大型语言模型压缩方法。该方法针对现有SVD-based压缩技术中的两个主要局限性:截断较小的奇异值可能导致的较高压缩损失,以及截断后缺乏对压缩权重的更新。SVD-LLM通过引入截断感知的数据白化和层状闭式更新策略,有效解决了这些问题。

项目技术分析

SVD-LLM的核心技术亮点包括:

  1. 截断感知数据白化:确保截断较小的奇异值时的压缩损失更低。
  2. 层状闭式更新:在高压缩比下补偿准确度的下降。

该方法在10个数据集和三种不同语言模型家族的八个模型上进行了评估,结果显示SVD-LLM在压缩比高的情况下,性能优于现有技术。

项目技术应用场景

SVD-LLM适用于以下场景:

  • 资源受限的部署环境:如在边缘设备上部署大型语言模型。
  • 快速模型迭代:在模型开发过程中,需要快速尝试不同的压缩比和配置。
  • 数据隐私保护:通过压缩模型,减少存储和传输的数据量。

项目特点

SVD-LLM具有以下特点:

  1. 高效的压缩:通过截断感知的数据白化,实现了高效的模型压缩。
  2. 保持模型性能:通过层状闭式更新,即使在较高的压缩比下,也能保持模型的性能。
  3. 易于集成:可以与LoRA微调、量化方法等现有技术结合,进一步提升模型性能。

如何使用SVD-LLM

安装

确保transformers包的版本为4.35.2,因为压缩后的LLM模型结构略有变化。

pip install -r requirements.txt
快速示例

以下命令将LLaMA-7B模型压缩到20%的压缩比,并自动运行评估代码。

bash compress_llama.sh
步骤说明

SVD-LLM实现了两种不同的管道,分别适用于低压缩比和高压缩比的情况。具体步骤如下:

  1. 低压缩比:执行截断感知数据白化和SVD压缩。
  2. 高压缩比:在第一步的基础上,进一步应用层状闭式更新。

此外,还可以结合LoRA微调和量化方法来优化压缩模型。

总结

SVD-LLM为大型语言模型的压缩提供了一种新的解决方案,它不仅提高了压缩效率,还保持了模型的性能。通过易于集成的特性和灵活的配置选项,SVD-LLM为研究和开发人员提供了一个强大的工具。如果你在寻找一种高效且可靠的LLM压缩方法,SVD-LLM绝对值得一试。

关键字:大型语言模型,模型压缩,奇异值分解,SVD-LLM,数据白化,闭式更新,资源受限部署,性能保持,易于集成。

SVD-LLM Official Code for "SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression" SVD-LLM 项目地址: https://gitcode.com/gh_mirrors/sv/SVD-LLM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆或愉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值