DeepSFM 项目使用教程
DeepSFM 项目地址: https://gitcode.com/gh_mirrors/de/DeepSFM
1. 项目介绍
DeepSFM 是一个基于 PyTorch 实现的结构从运动(Structure From Motion, SFM)项目,源自 ECCV2020 论文 "DeepSFM: Structure From Motion Via Deep Bundle Adjustment"。该项目通过深度学习技术,结合传统的 Bundle Adjustment(BA)方法,设计了一个物理驱动的架构,用于从不同视角的图像中估计深度图和相机姿态。
DeepSFM 的核心思想是通过两个基于成本体积的架构分别进行深度和姿态估计,并通过迭代运行来改进两者的估计结果。项目的主要贡献在于将传统 BA 方法与深度学习技术相结合,从而在结构和运动估计中取得了更好的效果。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已安装以下依赖:
- PyTorch 0.4.0
- CUDA 9.0
- Python 3.6.4
- scipy
- argparse
- tensorboardX
- progressbar2
- path.py
- transforms3d
- minieigen
2.2 数据准备
首先,下载并准备训练和测试数据:
# 下载训练数据
bash download_traindata.sh
# 转换训练数据为训练序列
python /dataset/preparation/preparedata_train.py
# 下载测试数据
bash download_testdata.sh
# 转换测试数据为测试序列
python /dataset/preparation/preparedata_test.py
2.3 模型训练
2.3.1 深度子网训练
python train.py /dataset/train/ --mindepth 0.5 --nlabel 64 --pose_init demon --depth_init demon
2.3.2 姿态子网训练
python pose_train.py /dataset/train/ --std_tr 0.27 --std_rot 0.12 --nlabel 10 --pose_init demon --depth_init demon
2.4 模型测试
2.4.1 深度子网测试
python test.py /dataset/test/ --sequence-length 2 --pretrained-dps depth.pth.tar --pose_init demon --depth_init demon --save I0
2.4.2 姿态子网测试
python pose_test.py /dataset/test/ --sequence-length 2 --pretrained-dps pose.pth.tar --pose_init demon --depth_init demon --save I0
3. 应用案例和最佳实践
3.1 应用案例
DeepSFM 可以应用于多种场景,如自动驾驶中的环境感知、机器人导航、增强现实(AR)中的场景重建等。通过从多个视角的图像中估计深度和姿态,DeepSFM 能够帮助系统更好地理解周围环境,从而实现更精确的定位和导航。
3.2 最佳实践
- 数据预处理:确保输入图像的质量和一致性,避免光照变化和遮挡对结果的影响。
- 模型调优:根据具体应用场景调整模型参数,如
mindepth
、nlabel
等,以获得最佳性能。 - 迭代优化:利用迭代运行的方式,逐步优化深度和姿态的估计结果,提高整体精度。
4. 典型生态项目
- DeMoN: DeepSFM 的初始深度和姿态估计依赖于 DeMoN 项目,DeMoN 是一个基于深度学习的深度和运动估计网络,为 DeepSFM 提供了初始的深度和姿态信息。
- DPSNet: DeepSFM 的深度子网实现参考了 DPSNet 项目,DPSNet 是一个用于深度估计的深度学习框架,DeepSFM 在此基础上引入了几何一致性约束。
通过结合这些生态项目,DeepSFM 能够更好地利用现有资源,提升整体性能和应用范围。