Representation-Free Model Predictive Control for Dynamic Quadruped
1. 项目基础介绍与主要编程语言
本项目是一个开源的MATLAB仿真框架,旨在为动态四足机器人提供一种无需表示模型的预测控制方法。项目的核心是 Representation-Free Model Predictive Control (RF-MPC) 算法,它通过旋转矩阵来表示机器人的方向,从而避免了欧拉角带来的奇点问题。该项目的主要编程语言是 MATLAB。
2. 项目的核心功能
- 旋转矩阵表示:RF-MPC 使用旋转矩阵来表示机器人的方向,避免了传统欧拉角表示中的奇点问题。
- 线性动力学推导:利用变分线性化(VBL)方法从机器人的非线性动力学中推导出线性动力学。
- 二次规划问题(QP)求解:项目包含二次规划问题的构建和求解,其中可以使用 MATLAB 的
quadprog
求解器或更高效的qpSWIFT
求解器(即将推出)。 - 仿真环境:提供了一套完整的MATLAB仿真环境,用户可以在此环境中模拟四足机器人的动态行为。
3. 项目最近更新的功能
最近项目的更新主要聚焦于代码的优化和功能的增强,以下是最近更新的功能:
- 优化了代码结构:对部分代码进行了重构,提高了代码的可读性和可维护性。
- 改进了线性化方法:在
fcn_get_ABD_eta
函数中对变分线性化方法进行了优化,提高了计算效率。 - 增加了新的测试案例:在
test
文件夹中添加了新的测试案例,以验证代码的正确性和性能。 - 更新了文档:对项目文档进行了更新,提供了更详细的安装和使用说明。
以上更新旨在提升项目的整体性能和用户体验,为动态四足机器人的研究和开发提供了更强大的工具。