Model-Free Adaptive Predictive Control

MFAPC称为无模型自适应预测控制,就是在无模型自适应控制MFAC的基础上加入预测机制,即利用到未来时刻的目标输出值。

同样的结合代码与公式简述一下MFAPC的基本原理和实现。

数据驱动的基本思想就是指下一时刻的输入可以由前几个时刻的控制输入和实际输出来获得,即

而引入紧格式动态线性化理论,即可以将上式简写成,当然,线性化需要满足几个基本的假设,一个是函数f要是连续可导,一个是系统要满足Lipschitz条件,显然,这些都不重要,如果想要具体了解这些假设的证明,可以去看论文,满足假设后,可以改写成

 也就是所谓的CFDL模型,这个式子告诉我们,只要能找到时变矩阵

 就可以直接从输入端映射到输出端。,所以接下的工作就是要找到这个时变矩阵。

将上式展开,同样向前预测N步,可以写出,

 再用将上述方程组改写成矩阵形式,

 

当然可以假设,控制输入信号在Nu时刻之后趋于平稳。所以,

 定义好系统之后,就要说明我们控制器的终极目标,引入准则函数,即所有的控制效果除了要使实际输出值逼近目标输出,还要京可能的让控制器的功耗要小,即控制信号的变化要小,这也是可以做上述假设的原因。所以,准则函数就是,

 于是就要算出在J足够小的前提下,的值。

即对矩阵相乘求导,

 

为避免矩阵求逆运算, 

 

 

 于是回到我们最终的目的,计算时变矩阵,同样的,我们的时变矩阵是为了直接用输入端表征到输出端,所以,

 同样的矩阵求导,找最小值,

 但是我们,之前的计算中发现,要计算需要计算A(k),而

所以,下一步就是要计算出,未来几个时刻的时变矩阵。

用前几个时刻的时变矩阵,计算当前时刻时变矩阵,即设计所谓的自回归模型

 

 

 

 最终,计算成功。结束枯燥的公式推导阶段,进入代码分享。

模型使用经典的两输入两输出模型,

系统输入信号,或者目标输出由经典的阶跃和连续曲线函数。

 

 结果还是很可以的。

 

 

自适应模型预测控制(Adaptive Model Predictive Control)是一种用于动态控制系统的先进控制方法。其基本原理是通过建立一个数学模型来描述系统的行为,并根据实时的测量数据来对模型进行修正和调整,以实现对系统状态的最优控制。 Simulink是一种Matlab的扩展工具,用于进行动态系统建模和仿真。它提供了一个直观的图形界面,可以通过将各种不同的模块连接在一起来构建控制系统模型。人们可以使用Simulink来方便地实现Adaptive Model Predictive Control算法,并进行仿真和验证。 在Simulink中,我们可以使用各种模块来构建自适应模型预测控制系统。首先,我们需要建立一个预测模型来描述系统的行为。这可以通过将现实系统的方程和参数输入到一些数值计算模块中来实现。然后,我们可以在模型中添加一个适应模块,来根据实时的测量数据对模型进行修正和调整。适应模块可以利用估计误差和控制效果来更新模型的参数,从而提高控制系统的鲁棒性和性能。最后,我们可以使用Simulink的仿真工具来验证和评估自适应模型预测控制系统的性能,并进行必要的调整和优化。 综上所述,自适应模型预测控制在Simulink中的实现可以帮助我们构建动态控制系统模型并进行仿真和验证,从而提高控制系统的鲁棒性和性能。这种方法可以应用于各种不同的领域,例如工业控制、自动驾驶、机器人等。通过Simulink的图形界面和广泛的数值计算模块,我们能够方便地实现自适应模型预测控制算法,并对其进行调整和优化,以满足具体应用的需求。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值