YOLOv5 Ascend 平台模型推理程序使用教程
项目地址:https://gitcode.com/gh_mirrors/yo/yolov5-ascend
1. 项目介绍
本项目是基于华为 Ascend 平台的 YOLOv5 om 模型推理程序。所有程序已在华为 Atlas 300I 推理卡(Ascend 310 AI CPU, CANN 5.0.2, npu-smi 21.0.2)上通过测试。该项目允许用户在华为 Ascend 平台上运行 YOLOv5 模型的推理程序。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您已经安装了以下环境:
- 华为 Ascend 平台环境
- ATC 工具
- CANN (pyACL)
- Python
- 必要的 Python 包:
opencv-python
,Pillow
,torch
,torchvision
2.2 导出 om 模型
-
训练 YOLOv5 模型: 使用
ultralytics/yolov5
训练您的 YOLOv5 模型,然后将 PyTorch 模型导出为 ONNX 格式。python export.py --weights yolov5s.pt --opset 12 --simplify --include onnx
-
在华为 Ascend 平台上转换 ONNX 模型为 om 模型:
atc --input_shape="images:1,3,640,640" --input_format=NCHW --output="yolov5s" --soc_version=Ascend310 --framework=5 --model="yolov5s.onnx" --output_type=FP32
2.3 运行推理程序
-
克隆仓库并将 om 模型移动到指定目录:
git clone git@github.com:jackhanyuan/yolov5-ascend.git mv yolov5s.om yolov5-ascend/ascend/
-
编辑标签文件: 编辑
yolov5-ascend/ascend/yolov5.label
文件。 -
运行推理程序:
python detect_yolov5_ascend.py
推理结果将保存到
img_out
文件夹中。
3. 应用案例和最佳实践
3.1 应用案例
- 智能监控:在华为 Ascend 平台上部署 YOLOv5 模型,用于实时监控和目标检测。
- 自动驾驶:利用 YOLOv5 模型进行车辆和行人检测,提升自动驾驶系统的安全性。
3.2 最佳实践
- 模型优化:使用 ATC 工具对模型进行优化,以提高推理速度和效率。
- 多任务处理:结合其他 AI 模型,实现多任务处理,如同时进行目标检测和图像分类。
4. 典型生态项目
- CANN:华为 Ascend 平台的 AI 计算框架,支持多种 AI 模型的部署和优化。
- Atlas 300I:华为的高性能推理卡,适用于各种 AI 应用场景。
- YOLOv5:由 Ultralytics 开发的实时目标检测模型,广泛应用于各种计算机视觉任务。
通过本教程,您可以在华为 Ascend 平台上快速部署和运行 YOLOv5 模型,实现高效的目标检测。
yolov5-ascend 项目地址: https://gitcode.com/gh_mirrors/yo/yolov5-ascend