AudioSet 分类项目使用教程
audioset_classification项目地址:https://gitcode.com/gh_mirrors/au/audioset_classification
1. 项目的目录结构及介绍
AudioSet 分类项目的目录结构如下:
audioset_classification/
├── appendixes/
├── extract_audioset_embedding/
├── keras/
├── metadata/
├── pytorch/
├── utils/
├── .gitignore
├── LICENSE.txt
├── README.md
├── runme.sh
目录介绍:
appendixes/
: 包含项目的附加文件。extract_audioset_embedding/
: 用于从原始音频波形中提取 AudioSet 嵌入特征的脚本。keras/
: 包含使用 Keras 框架的代码。metadata/
: 包含项目所需的元数据文件。pytorch/
: 包含使用 PyTorch 框架的代码。utils/
: 包含项目所需的实用工具脚本。.gitignore
: 指定 Git 版本控制系统忽略的文件和目录。LICENSE.txt
: 项目的许可证文件。README.md
: 项目的说明文档。runme.sh
: 项目的启动脚本。
2. 项目的启动文件介绍
项目的启动文件是 runme.sh
。该脚本用于启动项目的训练和评估过程。具体内容如下:
#!/bin/bash
# 设置 CUDA 可见设备
export CUDA_VISIBLE_DEVICES=0
# 运行提取 AudioSet 嵌入特征的脚本
python extract_audioset_embedding/extract_audioset_embedding.py
# 其他启动命令...
启动文件介绍:
export CUDA_VISIBLE_DEVICES=0
: 设置 CUDA 可见设备为 0,以便使用 GPU 进行计算。python extract_audioset_embedding/extract_audioset_embedding.py
: 运行提取 AudioSet 嵌入特征的脚本。
3. 项目的配置文件介绍
项目的配置文件主要包含在 metadata/
目录中,具体文件如下:
metadata/config.json
: 包含项目的配置参数,如数据路径、模型参数等。
配置文件介绍:
config.json
: 该文件定义了项目的各种配置参数,包括数据路径、模型参数、训练参数等。示例如下:
{
"data_path": "path/to/data",
"model_params": {
"learning_rate": 0.001,
"batch_size": 32
},
"training_params": {
"epochs": 100,
"early_stopping": true
}
}
配置文件参数介绍:
data_path
: 数据路径,指定训练和评估数据的位置。model_params
: 模型参数,包括学习率、批次大小等。training_params
: 训练参数,包括训练轮数、是否启用早停法等。
以上是 AudioSet 分类项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助您更好地理解和使用该项目。
audioset_classification项目地址:https://gitcode.com/gh_mirrors/au/audioset_classification