AudioSet 分类项目使用教程

AudioSet 分类项目使用教程

audioset_classification项目地址:https://gitcode.com/gh_mirrors/au/audioset_classification

1. 项目的目录结构及介绍

AudioSet 分类项目的目录结构如下:

audioset_classification/
├── appendixes/
├── extract_audioset_embedding/
├── keras/
├── metadata/
├── pytorch/
├── utils/
├── .gitignore
├── LICENSE.txt
├── README.md
├── runme.sh

目录介绍:

  • appendixes/: 包含项目的附加文件。
  • extract_audioset_embedding/: 用于从原始音频波形中提取 AudioSet 嵌入特征的脚本。
  • keras/: 包含使用 Keras 框架的代码。
  • metadata/: 包含项目所需的元数据文件。
  • pytorch/: 包含使用 PyTorch 框架的代码。
  • utils/: 包含项目所需的实用工具脚本。
  • .gitignore: 指定 Git 版本控制系统忽略的文件和目录。
  • LICENSE.txt: 项目的许可证文件。
  • README.md: 项目的说明文档。
  • runme.sh: 项目的启动脚本。

2. 项目的启动文件介绍

项目的启动文件是 runme.sh。该脚本用于启动项目的训练和评估过程。具体内容如下:

#!/bin/bash

# 设置 CUDA 可见设备
export CUDA_VISIBLE_DEVICES=0

# 运行提取 AudioSet 嵌入特征的脚本
python extract_audioset_embedding/extract_audioset_embedding.py

# 其他启动命令...

启动文件介绍:

  • export CUDA_VISIBLE_DEVICES=0: 设置 CUDA 可见设备为 0,以便使用 GPU 进行计算。
  • python extract_audioset_embedding/extract_audioset_embedding.py: 运行提取 AudioSet 嵌入特征的脚本。

3. 项目的配置文件介绍

项目的配置文件主要包含在 metadata/ 目录中,具体文件如下:

  • metadata/config.json: 包含项目的配置参数,如数据路径、模型参数等。

配置文件介绍:

  • config.json: 该文件定义了项目的各种配置参数,包括数据路径、模型参数、训练参数等。示例如下:
{
  "data_path": "path/to/data",
  "model_params": {
    "learning_rate": 0.001,
    "batch_size": 32
  },
  "training_params": {
    "epochs": 100,
    "early_stopping": true
  }
}

配置文件参数介绍:

  • data_path: 数据路径,指定训练和评估数据的位置。
  • model_params: 模型参数,包括学习率、批次大小等。
  • training_params: 训练参数,包括训练轮数、是否启用早停法等。

以上是 AudioSet 分类项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助您更好地理解和使用该项目。

audioset_classification项目地址:https://gitcode.com/gh_mirrors/au/audioset_classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

严微海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值