ProteinMPNN 开源项目安装与使用指南
项目地址:https://gitcode.com/gh_mirrors/pr/ProteinMPNN
目录结构及介绍
当你克隆或下载了 ProteinMPNN
开源项目后,你会看到以下主要目录和文件:
主要目录说明
- code: 包含用于论文中的代码实现。
- resources: 额外资源如数据集、预训练模型等可能存放于此。
- README.md: 项目的主要读我文件,通常包含了项目描述、依赖项、安装步骤以及如何运行的基本指南。
其他重要目录
- helper_scripts: 这个目录下包含辅助脚本,这些脚本可帮助解析PDB文件,指定哪些链进行设计,固定哪些残基,添加AA偏置等操作。
- examples/: 简单代码示例存储在此处,包括输入的PDB文件及其相应的输出结果。
- colab_notebooks/: 提供了Google Colab笔记本的例子,方便在云端环境快速实验。
- training/: 包含用于重新训练模型的代码和数据。
启动文件介绍
主执行脚本是 protein_mpnn_run.py
,它初始化并运行模型,而 protein_mpnn_utils.py
提供对主脚本的支持功能,例如处理PDB文件、参数设置等。
protein_mpnn_run.py
这是项目的入口点,用于加载和运行深度学习模型。通过命令行参数可以控制多种行为,比如是否抑制打印输出(--suppress_print)、使用哪个模型权重文件等。
protein_mpnn_utils.py
这个脚本提供了实用函数,主要用于处理PDB格式的数据,例如解析蛋白质结构,指定设计策略,设置固定残基等。
配置文件介绍
尽管 ProteinMPNN
没有单独的配置文件,其设置可以通过 protein_mpnn_run.py
中的命令行参数来调整。例如:
python protein_mpnn_run.py --suppress_print 0
这里的 --suppress_print
参数被设定为 0
表明将不抑制控制台打印输出的信息,这在调试过程中非常有用。
为了更好地理解或修改项目的行为,在运行时提供适当的命令行参数至关重要。通过查看 protein_mpnn_run.py
脚本开头的部分,可以找到所有可用参数的完整列表及其默认值,从而深入了解项目的配置选项。
以上是对 ProteinMPNN
项目的目录结构、主要启动文件和基本配置方式的简要介绍。希望这份指南能够帮助你更顺利地探索和利用此项目。
ProteinMPNN 项目地址: https://gitcode.com/gh_mirrors/pr/ProteinMPNN