探索深度学习的新境界:Stochastic Weight Averaging (SWA) 项目推荐

探索深度学习的新境界:Stochastic Weight Averaging (SWA) 项目推荐

swaStochastic Weight Averaging in PyTorch项目地址:https://gitcode.com/gh_mirrors/sw/swa

在深度学习的海洋中,每一次技术的革新都可能引领我们到达新的彼岸。今天,我们要介绍的是一个名为Stochastic Weight Averaging (SWA)的开源项目,它以其独特的训练方法,正在改变我们对深度神经网络(DNN)训练的认知。

项目介绍

Stochastic Weight Averaging (SWA) 是一个基于PyTorch的实现,源自论文《Averaging Weights Leads to Wider Optima and Better Generalization》。SWA 提供了一种简单而有效的DNN训练方法,可以作为传统SGD(随机梯度下降)的直接替代,带来更好的泛化性能、更快的收敛速度,且几乎不增加任何额外开销。

项目技术分析

SWA的核心思想是通过对SGD产生的多个权重样本进行平均,使用一种常量或循环学习率调度策略,促使SGD探索权重空间中高性能网络对应的点集。实验表明,SWA不仅比SGD更快收敛,而且能够达到更宽广的最优解,从而提供更高的测试准确率。

项目及技术应用场景

SWA适用于任何需要使用SGD进行训练的场景,特别是在图像分类任务中表现突出。项目提供了在CIFAR-10和CIFAR-100数据集上的示例,展示了SWA在不同模型上的应用效果。无论是学术研究还是工业应用,SWA都能为你的DNN训练带来显著的性能提升。

项目特点

  1. 简单易用:SWA作为PyTorch的核心优化器之一,使用起来与SGD或Adam一样简单。
  2. 性能卓越:在多个数据集和模型上,SWA都展现出了比传统SGD更好的泛化能力和收敛速度。
  3. 低开销:SWA的实现几乎不增加额外的计算负担,使得其在实际应用中更加可行。
  4. 广泛兼容:项目不仅支持多种模型,还兼容多种数据集,具有很高的灵活性和适应性。

结语

Stochastic Weight Averaging (SWA) 项目是一个值得每一个深度学习从业者关注的开源项目。它不仅提供了一种新的训练方法,更在实践中证明了其优越性。如果你正在寻找提升DNN训练效果的方法,那么SWA无疑是一个不可多得的选择。立即尝试,让你的模型性能更上一层楼!


参考文献

  • Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging Weights Leads to Wider Optima and Better Generalization. arXiv preprint arXiv:1803.05407.

项目链接

依赖库

  • PyTorch
  • torchvision
  • tabulate

使用示例

python3 train.py --dir=<DIR> \
                 --dataset=<DATASET> \
                 --data_path=<PATH> \
                 --model=<MODEL> \
                 --epochs=<EPOCHS> \
                 --lr_init=<LR_INIT> \
                 --wd=<WD> \
                 --swa \
                 --swa_start=<SWA_START> \
                 --swa_lr=<SWA_LR>

结果展示

  • CIFAR-100 和 CIFAR-10 数据集上的测试准确率提升显著。

其他实现

  • Chainer Implementation
  • Keras/Tensorflow-Keras Implementation
  • PyTorch Contrib

参考实现


通过以上介绍,相信你已经对Stochastic Weight Averaging (SWA) 项目有了全面的了解。现在,就让我们一起踏上这段技术探索之旅,用SWA开启深度学习的新篇章!

swaStochastic Weight Averaging in PyTorch项目地址:https://gitcode.com/gh_mirrors/sw/swa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班磊闯Andrea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值