深度白平衡编辑:一种创新的图像处理框架
1. 项目基础介绍与主要编程语言
本项目是《Deep White-Balance Editing》论文的参考代码,由Samsung AI Center (SAIC) - Toronto和York University的研究人员共同开发。该项目旨在通过深度学习技术,实现对图像白平衡的精确编辑。主要编程语言包括Matlab和PyTorch,提供了两种不同平台的使用者以灵活的选择。
2. 核心功能
项目的核心功能是一个深度学习的多任务框架,用于白平衡编辑。具体来说,它包括以下特点:
- 自动白平衡(AWB):自动调整图像的白平衡,以恢复场景的真实颜色。
- 白平衡编辑:提供手动调整白平衡的功能,允许用户根据需要调整图像的颜色温度。
项目提供了完整的训练和测试代码,以及用于演示的示例脚本,使得用户可以轻松地测试和部署模型。
3. 最近更新的功能
最近项目更新的功能主要包括:
- 代码的改进和优化:为了提高效率和稳定性,代码库进行了持续的优化。
- 新增演示脚本:提供了新的脚本,使得用户可以更方便地进行单张图像或图像目录的处理。
- 训练选项的增强:在训练过程中,增加了更多的选项,如学习率下降周期和因子,以及每个图像的随机贴图数量和大小等,以提供更灵活的训练配置。
通过这些更新,项目不仅提高了易用性,还增强了功能的多样性,使得该项目能够更好地服务于图像处理和白平衡研究的领域。