RM_Buff_Tracker_GUT 开源项目教程
RM_Buff_Tracker_GUT项目地址:https://gitcode.com/gh_mirrors/rm/RM_Buff_Tracker_GUT
项目介绍
RM_Buff_Tracker_GUT 是一个用于 RoboMaster 机器人比赛的能量机关识别和预测的开源项目。该项目通过视觉识别技术,实现了对能量机关的快速跟踪和预测,从而帮助机器人更有效地完成比赛任务。项目主要包含识别和预测两个部分,利用 OpenCV、NumPy 等库进行图像处理和数据分析。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.x
- OpenCV-Python
- NumPy
- Matplotlib
- Scipy
克隆项目
首先,克隆项目到本地:
git clone https://github.com/DH13768095744/RM_Buff_Tracker_GUT.git
cd RM_Buff_Tracker_GUT
运行示例
项目中包含了一些示例代码,您可以通过以下命令运行示例:
python examples/example_for_prediction/example.py
自定义配置
您可以根据需要修改配置文件 parameter.yaml
,调整识别和预测的参数。
应用案例和最佳实践
案例一:能量机关识别
在 RoboMaster 比赛中,能量机关的识别是关键步骤。通过本项目,您可以实现对能量机关的快速识别,具体步骤如下:
- 图像预处理:对输入图像进行二值化和膨胀处理,确保流水灯和击打框连接。
- 中心R识别:通过筛选外接矩形,使用上一帧的R_BOX进行CIOU匹配,确定当前帧的中心R位置。
- 扇叶识别:在能量机关外围绘制空心圆,内围绘制实心圆,通过最小外接矩形和外接矩形进行扇叶识别。
案例二:能量机关预测
预测能量机关的移动路径可以帮助机器人提前做出反应。本项目通过历史数据和当前帧信息,实现对能量机关的预测,具体步骤如下:
- 数据收集:收集历史帧的能量机关位置信息。
- 模型训练:使用收集的数据训练预测模型。
- 实时预测:在比赛过程中,实时输入当前帧信息,输出预测结果。
典型生态项目
RoboMaster 视觉算法开源软件栈
与 RM_Buff_Tracker_GUT 项目相关的生态项目包括:
- RoboMaster 视觉算法开源软件栈:提供了一套完整的视觉算法解决方案,包括目标检测、跟踪和预测等。
- RoboMaster 数据集开源:提供了丰富的视觉数据集,用于训练和测试视觉算法。
- RoboMaster 机器人控制框架:提供了一套机器人控制框架,方便开发者进行机器人控制和调试。
通过这些生态项目,您可以构建一个完整的 RoboMaster 机器人系统,实现从视觉识别到机器人控制的全流程。
RM_Buff_Tracker_GUT项目地址:https://gitcode.com/gh_mirrors/rm/RM_Buff_Tracker_GUT
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考