2023新赛季,官方对大能量机关进行了更改。接下来的识别过程是本人刚接触rm时在梯队中写的,希望对大家的识别有所帮助。
图像预处理
本步骤主要目的是提取想要的颜色,把不需要的颜色过滤掉。
核心思路是通过二值化,让白色区域为我们想要的颜色区域。
这里有两种二值化的思路:
1:使用inRange函数,通过hsv找到需要的颜色。
不会用inRange函数的同学可以看一下这篇文章,学习如何实操。
(11条消息) OpenCV inRange函数 小白使用教程_不知所云的咸鱼的博客-CSDN博客
2:通过分离颜色通道,配合黑白二值化,实现提取想要的颜色区域。
代码如下:
/*容器,存放分离通道后的图像*/
vector<Mat> Channels;
split(image, Channels);
/*
红色
Mat redimage = Channels.at(2) - Channels.at(0);
*/
/*蓝色*/
Mat blueImage = Channels.at(0) - Channels.at(2);
此处imshow了分离通道后的图像。
由于在实际情况下,外界会有灯光等因素的干扰,imshow出来的图像不能像此处一样理想,所以需要用到二值化来消除噪声。
/*二值化*/
Mat binaryImage;
threshold(blueImage, binaryImage, 140, 255, THRESH_BINARY);
思路1:
作者的思路是将风扇上的箭头合并,使它成为特征图形。再确定能量机关的中心点R,最后通过两者中心矩确定需要打击点。
确定R:我们确定轮廓,通常采用findContours函数。参数选择CV_RETR_TREE,CV_CHAIN_APPROX_NONE,建立关系树,找到需要轮廓。
对CV_RETR_TREE,CV_CHAIN_APPROX_NONE寻找轮廓不熟悉的同学,可以看这篇文章学习:
(11条消息) findContours函数串讲_不知所云的咸鱼的博客-CSDN博客
通过观察,我们发现R轮廓,有一个没有任何同级轮廓的子轮廓,并且是满足前置条件下面积最小的轮廓,我们可以通过这个来确定R轮廓。
代码如下:
/*找到圆周运动的圆心——R*/
vector<vector<Point>> outlines;
vector<Vec4i> hierarchies;
int minArea = 10000;
int minId;
Point2f center; /*定义外接圆中心坐标*/
float radius; /*定义外接圆半径*/
findContours(binaryImage, outlines, hierarchies, RETR_TREE, CHAIN_APPROX_NONE);
for (int i = 0; i < outlines.size(); i++) {
vector<Point>points;
double area = contourArea(outlines[i]);
/*面积排除噪声*/
if (area < 10 || area>10000)
continue;
/*找到没有父轮廓的轮廓*/
if (hierarchies[i][3] >= 0 && hierarchies[i][3] < outlines.size())
continue;
/*找有子轮廓的*/
if (hierarchies[i][2] < 0 || hierarchies[i][2] >= outlines.size())
continue;
/*控制误差范围*/
if (area <= minArea + 10 && area >= minArea - 20) {
minArea = area;
minId = i;
continue;
}
/*面积最小的轮廓*/
if (minArea >= area)
{
minArea = area;
minId = i;
}
}
/*防止minId不在范围内报错*/
if (minId >= 0 && minId < outlines.size()) {
/*画外接圆并找到圆心*/
minEnclosingCircle(Mat(outlines[minId]), center, radius);
circle(test, center, radius, Scalar(0, 0, 255), 1, 8, 0);
}
else {
//退出
}
这里发现画外接圆并不稳定,代码可以从此处优化。
通过膨胀,将风扇上的箭头合并,使它成为特征图形:
代码如下:
/*膨胀操作*/
Mat element = getStructuringElement(0, Size(3, 3));
Mat dilateImage;
/*dilate最后一个数字是膨胀次数*/
dilate(binaryImage, dilateImage, element, Point(-1, -1), 2);
由于膨胀会将R标特征损坏,所以在膨胀前先确定R的位置。
之后寻找这个轮廓:
它没有子轮廓,也没有父轮廓,是满足前置条件下面积最大的轮廓。
代码如下:
/*轮廓发现*/
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
double maxArea = -1;
int maxId;
findContours(dilateImage, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE);
for (int i = 0; i < contours.size(); i++) {
vector<Point>points;
double area = contourArea(contours[i]);
/*面积排除噪声*/
if (area < 20 || area>10000)
continue;
/*找到没有父轮廓的轮廓*/
if (hierarchy[i][3] >= 0 && hierarchy[i][3] < contours.size())
continue;
/*找没子轮廓的*/
if (hierarchy[i][2] >= 0 && hierarchy[i][2] < contours.size())
continue;
/*找面积最大的轮廓*/
if (maxArea <= area)
{
maxArea = area;
maxId = i;
}
/*控制误差范围*/
if (area <= maxArea + 50 && area >= maxArea - 50) {
maxArea = area;
maxId = i;
}
}
if (maxId >= 0 && maxId < contours.size()) {
/*画出需打部位轮廓*/
drawContours(test, contours, maxId, Scalar(0, 255, 255), 1, 8);
}
得到此轮廓后,可以计算其中心点位置,通过此中心点和R轮廓中心点,计算距离,连线并延长,最后得到目标点。
代码如下:
Point2f rectMid;/*半径参考长度所在轮廓几何中心*/
if (maxId >= 0 && maxId < contours.size()) {
/*计算矩*/
Moments rect;
rect = moments(contours[maxId], false);
/*计算中心矩:*/
Point2f rectmid;
rectmid = Point2f(rect.m10 / rect.m00, rect.m01 / rect.m00);
/*画出需打部位轮廓*/
drawContours(test, contours, maxId, Scalar(0, 255, 255), 1, 8);
rectMid = rectmid;
}
/*长度2:1计算需打击部位,存放*/
Point2f target;/*目标点*/
double multiple = 1.5;/*倍率,换算目标点所用*/
/*第一象限*/
if (rectMid.x >= center.x && rectMid.y <= center.y) {
target = Point2f(center.x + (rectMid.x - center.x) * multiple, center.y - (center.y - rectMid.y) * multiple);
}
/*第二象限*/
if (rectMid.x <= center.x && rectMid.y <= center.y) {
target = Point2f(center.x - (center.x - rectMid.x) * multiple, center.y - (center.y - rectMid.y) * multiple);
}
/*第三象限*/
if (rectMid.x <= center.x && rectMid.y >= center.y) {
target = Point2f(center.x - (center.x - rectMid.x) * multiple, center.y + (rectMid.y - center.y) * multiple);
}
/*第四象限*/
if (rectMid.x >= center.x && rectMid.y >= center.y) {
target = Point2f(center.x + (rectMid.x - center.x) * multiple, center.y + (rectMid.y - center.y) * multiple);
}
circle(test, target, 1, Scalar(0, 255, 255), -1, 8, 0);
得到最终效果图:
定义的点 target 即为目标点。
完整版代码发布在github上了:fourthyuan/rm: rm入门代码 (github.com),对你有帮助的话,帮我增加一下下载量吧。