RoboMaster 2023大能量机关视觉识别教程

本文介绍了如何使用OpenCV进行图像预处理,包括二值化方法,通过分离颜色通道提取目标颜色。接着,文章详细讲解了利用findContours函数寻找轮廓,确定能量机关中心点R,并结合膨胀操作识别风扇上的箭头特征。最后,通过计算轮廓中心点与R点的距离确定目标打击点,实现精确的目标识别。
摘要由CSDN通过智能技术生成

        2023新赛季,官方对大能量机关进行了更改。接下来的识别过程是本人刚接触rm时在梯队中写的,希望对大家的识别有所帮助。

图像预处理

        本步骤主要目的是提取想要的颜色,把不需要的颜色过滤掉。

核心思路是通过二值化,让白色区域为我们想要的颜色区域。

         这里有两种二值化的思路:

1:使用inRange函数,通过hsv找到需要的颜色。

不会用inRange函数的同学可以看一下这篇文章,学习如何实操。

(11条消息) OpenCV inRange函数 小白使用教程_不知所云的咸鱼的博客-CSDN博客

2:通过分离颜色通道,配合黑白二值化,实现提取想要的颜色区域。

代码如下:

	/*容器,存放分离通道后的图像*/
	vector<Mat> Channels;
	split(image, Channels);
	/*
	红色
	Mat redimage = Channels.at(2) - Channels.at(0);
	*/
	/*蓝色*/
	Mat blueImage = Channels.at(0) - Channels.at(2);

        此处imshow了分离通道后的图像。

        由于在实际情况下,外界会有灯光等因素的干扰,imshow出来的图像不能像此处一样理想,所以需要用到二值化来消除噪声。

    /*二值化*/
	Mat binaryImage;
	threshold(blueImage, binaryImage, 140, 255, THRESH_BINARY);

思路1:

      作者的思路是将风扇上的箭头合并,使它成为特征图形。再确定能量机关的中心点R,最后通过两者中心矩确定需要打击点。

       确定R:我们确定轮廓,通常采用findContours函数。参数选择CV_RETR_TREE,CV_CHAIN_APPROX_NONE,建立关系树,找到需要轮廓。

对CV_RETR_TREE,CV_CHAIN_APPROX_NONE寻找轮廓不熟悉的同学,可以看这篇文章学习:

(11条消息) findContours函数串讲_不知所云的咸鱼的博客-CSDN博客

     通过观察,我们发现R轮廓,有一个没有任何同级轮廓的子轮廓,并且是满足前置条件下面积最小的轮廓,我们可以通过这个来确定R轮廓。

代码如下:

/*找到圆周运动的圆心——R*/
	vector<vector<Point>> outlines;
	vector<Vec4i> hierarchies;
	int minArea = 10000;
	int minId;
	Point2f center;  /*定义外接圆中心坐标*/
	float radius;  /*定义外接圆半径*/
	findContours(binaryImage, outlines, hierarchies, RETR_TREE, CHAIN_APPROX_NONE);
	for (int i = 0; i < outlines.size(); i++) {
		vector<Point>points;
		double area = contourArea(outlines[i]);
		/*面积排除噪声*/
		if (area < 10 || area>10000)
			continue;
		/*找到没有父轮廓的轮廓*/
		if (hierarchies[i][3] >= 0 && hierarchies[i][3] < outlines.size())
			continue;
		/*找有子轮廓的*/
		if (hierarchies[i][2] < 0 || hierarchies[i][2] >= outlines.size())
			continue;
		/*控制误差范围*/
		if (area <= minArea + 10 && area >= minArea - 20) {
			minArea = area;
			minId = i;
			continue;
		}
		/*面积最小的轮廓*/
		if (minArea >= area)
		{
			minArea = area;
			minId = i;
		}
	}
	/*防止minId不在范围内报错*/
	if (minId >= 0 && minId < outlines.size()) {
	/*画外接圆并找到圆心*/
		minEnclosingCircle(Mat(outlines[minId]), center, radius);
		circle(test, center, radius, Scalar(0, 0, 255), 1, 8, 0);
	}
	else {
		//退出
	}

这里发现画外接圆并不稳定,代码可以从此处优化。

        通过膨胀,将风扇上的箭头合并,使它成为特征图形:

代码如下:

	/*膨胀操作*/
	Mat element = getStructuringElement(0, Size(3, 3));
	Mat dilateImage;
	/*dilate最后一个数字是膨胀次数*/
	dilate(binaryImage, dilateImage, element, Point(-1, -1), 2);

 由于膨胀会将R标特征损坏,所以在膨胀前先确定R的位置。

        之后寻找这个轮廓:

         它没有子轮廓,也没有父轮廓,是满足前置条件下面积最大的轮廓。

代码如下:

	/*轮廓发现*/
	vector<vector<Point>> contours;
	vector<Vec4i> hierarchy;
	double maxArea = -1;
	int maxId;
	findContours(dilateImage, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE);
	for (int i = 0; i < contours.size(); i++) {
		vector<Point>points;
		double area = contourArea(contours[i]);
		/*面积排除噪声*/
		if (area < 20 || area>10000)
			continue;
		/*找到没有父轮廓的轮廓*/
		if (hierarchy[i][3] >= 0 && hierarchy[i][3] < contours.size())
			continue;
		/*找没子轮廓的*/
		if (hierarchy[i][2] >= 0 && hierarchy[i][2] < contours.size())
			continue;
		/*找面积最大的轮廓*/
		if (maxArea <= area)
		{
			maxArea = area;
			maxId = i;
		}
		/*控制误差范围*/
		if (area <= maxArea + 50 && area >= maxArea - 50) {
			maxArea = area;
			maxId = i;
		}
	}
	if (maxId >= 0 && maxId < contours.size()) {
		/*画出需打部位轮廓*/
		drawContours(test, contours, maxId, Scalar(0, 255, 255), 1, 8);
	}

        得到此轮廓后,可以计算其中心点位置,通过此中心点和R轮廓中心点,计算距离,连线并延长,最后得到目标点。

代码如下:

 Point2f rectMid;/*半径参考长度所在轮廓几何中心*/
	
	if (maxId >= 0 && maxId < contours.size()) {
		/*计算矩*/
		Moments rect;
		rect = moments(contours[maxId], false);
		/*计算中心矩:*/
		Point2f rectmid;
		rectmid = Point2f(rect.m10 / rect.m00, rect.m01 / rect.m00);
	    /*画出需打部位轮廓*/
		drawContours(test, contours, maxId, Scalar(0, 255, 255), 1, 8);
		rectMid = rectmid;
	}

	/*长度2:1计算需打击部位,存放*/

	Point2f target;/*目标点*/
	double multiple = 1.5;/*倍率,换算目标点所用*/
	
		/*第一象限*/
	if (rectMid.x >= center.x && rectMid.y <= center.y) {
		target = Point2f(center.x + (rectMid.x - center.x) * multiple, center.y - (center.y - rectMid.y) * multiple);

	}
	/*第二象限*/
	if (rectMid.x <= center.x && rectMid.y <= center.y) {
		target = Point2f(center.x - (center.x - rectMid.x) * multiple, center.y - (center.y - rectMid.y) * multiple);

	}
	/*第三象限*/
	if (rectMid.x <= center.x && rectMid.y >= center.y) {
		target = Point2f(center.x - (center.x - rectMid.x) * multiple, center.y + (rectMid.y - center.y) * multiple);

	}
	/*第四象限*/
	if (rectMid.x >= center.x && rectMid.y >= center.y) {
		target = Point2f(center.x + (rectMid.x - center.x) * multiple, center.y + (rectMid.y - center.y) * multiple);

	}
	circle(test, target, 1, Scalar(0, 255, 255), -1, 8, 0);

得到最终效果图:


定义的点 target 即为目标点。

        完整版代码发布在github上了:fourthyuan/rm: rm入门代码 (github.com),对你有帮助的话,帮我增加一下下载量吧。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值