NTU_RGB+D数据集介绍及骨架数据可视化

NTU_RGB+D数据集介绍及骨架数据可视化

【下载地址】NTU_RGBD数据集介绍及骨架数据可视化分享 NTU_RGB+D数据集是一个用于动作识别的大规模数据集,包含了56880个动作样本。每个样本包括RGB视频、深度图序列、3D骨架数据和红外视频等。数据集由3个Microsoft Kinect v2相机同时捕获,提供了丰富的多模态数据 【下载地址】NTU_RGBD数据集介绍及骨架数据可视化分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/9e695

简介

NTU_RGB+D数据集是一个用于动作识别的大规模数据集,包含了56880个动作样本。每个样本包括RGB视频、深度图序列、3D骨架数据和红外视频等。数据集由3个Microsoft Kinect v2相机同时捕获,提供了丰富的多模态数据。

数据集内容

  • RGB视频:分辨率为1920×1080。
  • 深度图序列:分辨率为512×424。
  • 红外视频:分辨率为512×424。
  • 3D骨架数据:每帧包含25个身体关节的三维坐标。

数据集结构

数据集文件命名格式如下:

  • S:设置号,共有17组设置。
  • C:相机ID,共有3架相机。
  • P:人物ID,共有40个人。
  • R:同一个动作的表演次数。
  • A:动作类别,共有60个。

示例文件名:S010C001P019R001A010_skeleton

骨架数据可视化

本资源文件提供了Python代码,用于可视化NTU_RGB+D数据集中的3D骨架数据。代码支持2D和3D两种可视化方式,帮助用户更好地理解和分析数据集中的动作样本。

使用方法

  1. 下载数据集:从官方地址下载NTU_RGB+D数据集。
  2. 运行代码:使用提供的Python代码读取并可视化骨架数据。
  3. 调整参数:根据需要调整代码中的参数,如帧数、关节连接等。

注意事项

  • 数据集较大,下载和处理可能需要较长时间。
  • 可视化代码需要安装必要的Python库,如numpymatplotlib等。

参考资料

  • NTU_RGB+D数据集论文:CVPR2016
  • 数据集官方下载地址:Skeleton_Data_Only(BaiDuYun)

更新日志

  • 2024-01-14:更新了数据集下载地址和代码示例。

联系我们

如有任何问题或建议,请通过CSDN博客联系作者。

【下载地址】NTU_RGBD数据集介绍及骨架数据可视化分享 NTU_RGB+D数据集是一个用于动作识别的大规模数据集,包含了56880个动作样本。每个样本包括RGB视频、深度图序列、3D骨架数据和红外视频等。数据集由3个Microsoft Kinect v2相机同时捕获,提供了丰富的多模态数据 【下载地址】NTU_RGBD数据集介绍及骨架数据可视化分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/9e695

### NTU RGB+D 数据集概述 NTU RGB+D 动作识别数据集由56,880个动作样本构成,每个样本包含了RGB视频、深度图序列、3D骨架数据以及红外视频。这些数据通过三个Microsoft Kinect v.2摄像头同步录制而成[^2]。 #### 下载指南 有兴趣的研究人员可以通过注册账户来访问该数据集。具体流程涉及提交申请表格并同意发布的条款与条件。一旦请求得到验证和批准,申请人将获得用于下载两个版本——即“NTU RGB+D”及其扩展版“NTU RGB+D 120”的唯一登录凭证[^1]。 #### 主要特征描述 - **多模态记录**:提供四种不同类型的感知信息—彩色图像(RGB)、距离测量(Depth Map)、骨骼姿态(Skeleton Data),还有近红外光谱(Infrared Video)。 - **高分辨率素材**:RGB视频采用全高清标准(1920x1080),而其他两种视觉形式则保持一致的空间维度(512x424)。这使得即使是在复杂背景下也能捕捉到清晰的动作细节。 - **丰富的空间覆盖范围**:利用三台摄像机从多个角度同时拍摄同一场景,从而增强了对于人体运动的理解能力,并减少了遮挡问题的影响。 - **精确的骨骼追踪**:每帧内可检测多达25个人体关键部位的位置坐标,形成完整的三维结构表示,这对于分析特定姿势或手势非常有用。 ```python import numpy as np # 假设我们有一个包含单个动作实例的数据文件 'sample_data.npz' data = np.load('sample_data.npz') rgb_video = data['rgb'] # 彩色视频数组 (T,H,W,C) depth_maps = data['depth'] # 深度映射数组 (T,H,W) skeletons = data['skel'] # 骨骼数据矩阵 (T,J,D), J=25 关节点数, D=3 维度(x,y,z) print(f"RGB video shape: {rgb_video.shape}") print(f"Depth maps shape: {depth_maps.shape}") print(f"Skeleton joints shape: {skeletons.shape}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农理湛Medwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值