介绍动作识别数据集:“NTU RGB+D”数据集和“NTU RGB+D 120”数据集

动作识别数据集:“NTU RGB+D”数据集和“NTU RGB+D 120”数据集

(还包括AUTH UAV手势数据集:NTU 4级)
本页介绍两个数据集:“NTU RGB+D”和“NTU RGB+D 120”。
“NTU RGB+D”包含60个动作类和56,880个视频样本。
“NTU RGB+D 120”扩展了“NTU RGB+D”,增加了另外60个类和另外57,600个视频样本,即“NTU RGB+D 120”总共有120个类和114,480个样本。
这两个数据集都包含每个样本的 RGB 视频、深度图序列、3D 骨骼数据和红外 (IR) 视频。每个数据集由三个 Kinect V2 相机同时捕获。
RGB视频的分辨率为1920x1080,深度图和红外视频均为512x424,3D骨骼数据包含每帧3个身体关节的25D坐标。

  1. 行动类
    这两个数据集中的动作分为三大类:日常行动、相互行动和医疗状况,如下表所示。
    注意:从 A1 到 A60 标记的操作包含在“NTU RGB+D”中,从 A1 到 A120 标记的操作包含在“NTU RGB+D 120”中。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
6. 使用条款和条件
数据集仅供学术研究之用,教育或研究机构的研究人员可免费用于非商业目的。

这两个数据集的使用受以下条款和条件的约束: • 未经 ROSE 实验室明确许可,以下任何行为都将被视为非法:
从该数据集重新分发、派生或生成新数据集,以及以任何方式或形式(部分或全部)将任何这些数据集用于商业用途。
• 为了保护隐私,任何这些数据集中所有主题的图像只允许在学术出版物和演示文稿中进行演示。
• “NTU RGB+D”和“NTU RGB+D 120”动作识别数据集的所有用户同意对ROSE实验室及其管理人员、员工和代理商进行赔偿、辩护并使其免受任何和所有损失、费用和损害。

如果有兴趣,研究人员可以注册一个帐户,提交申请表并接受发布协议。我们将验证您的请求并批准下载数据集。登录ID可用于“NTU RGB+D”和“NTU RGB+D 120”。

  1. 相关出版物
    所有使用“NTU RGB+D”或“NTU RGB+D 120”动作识别数据库或任何派生数据集(见第8节)的出版物都应包括以下确认:“(部分)本文中的研究使用了南洋理工大学ROSE实验室提供的NTU RGB + D(或NTU RGB + D 120)动作识别数据集, 新加坡。

此外,这些出版物应引用以下论文:

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, Gang Wang, “NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 [PDF].
Jun Liu,Amir Shahroudy,Mauricio Perez,Gang Wang,Ling-Yu Duan,Alex C. Kot,“NTU RGB + D 120:3D人类活动理解的大规模基准”,IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2019。 [PDF]。

关于RGB+D动作识别的一些相关著作:

Amir Shahroudy, Tian-Tsong Ng, Qingxiong Yang, Gang Wang, “深度视频中动作识别的多模态多部分学习”, TPAMI, 2016.
Amir Shahroudy,Tian-Tsong Ng,Yihong Gong,Gang Wang,“RGB + D视频中动作识别的深度多模态特征分析”TPAMI,2018。
Amir Shahroudy, Gang Wang, Tian Tsong Ng, “RGB-D 序列中动作识别的多模态特征融合”, ISCCSP, 2014.
刘军,Amir Shahroudy,徐东,王刚,“具有3D人类行为识别信任门的时空LSTM”,ECCV,2016。
刘军, 王刚, 胡平, 段玲宇, Alex C. Kot, “用于 3D 动作识别的全局上下文感知注意力 LSTM 网络”, CVPR, 2017.
刘军,Amir Shahroudy,徐东,Alex C. Kot,王刚,“基于骨架的动作识别使用时空LSTM网络与信任门”,TPAMI,2018。
Jun Liu, Gang Wang, Ling-Yu Duan, Kamila Abdiyeva, Alex C. Kot, “基于骨骼的人类行为识别与全球上下文感知注意LSTM网络”, TIP, 2018.
刘军,Amir Shahroudy,王刚,段玲宇,Alex C. Kot,“基于骨骼的在线动作预测使用尺度选择网络”,TPAMI,2019。
杨思源、刘军、卢世建、二孟华和Alex Kot,“基于多阶特征分析的手势识别和3D手部姿势估计的协作学习”,ECCV 2020。
杨思源、刘军、卢世建、二梦华和 Alex Kot,“用于无监督 3D 动作表示学习的骨架云着色”,ICCV 2021。

  1. 基于NTU RGB+D数据集的衍生作品
    以下是一些派生自或部分使用NTU RGB + D数据集的数据集:

8.1. LSMB19:用于在连续运动数据流中搜索和注释的大规模运动基准 (http://mocap.fi.muni.cz/LSMB)。

J. Sedmidubsky,P. Elias,P. Zezula,“连续人类骨骼序列中的基准搜索和注释”,ICMR,2019 年。

8.2. AUTH 无人机手势数据集 (https://aiia.csd.auth.gr/auth-uav-gesture-dataset/ ).

F. Patrona,I. Mademlis,I. Pitas,“用于自主无人机处理的手势语言概述”,在空中机器人系统与环境物理相互作用研讨会 (AIRPHARO) 的论文集,2021 年。
您可以使用相同的申请表请求NTU RGB+D数据集的相关4类子数据集,并从下载页面的第3.0节下载

参考资料

https://rose1.ntu.edu.sg/dataset/actionRecognition/

代码参考:
https://github.com/shahroudy/NTURGB-D
https://github.com/kchengiva/Shift-GCN
https://github.com/Hrener/3D-Action-recognition
https://blog.csdn.net/Hren0412/article/details/89495678

### NTU RGB+D 数据集概述 NTU RGB+D 动作识别数据集由56,880个动作样本构成,每个样本包含了RGB视频、深度图序列、3D骨架数据以及红外视频。这些数据通过三个Microsoft Kinect v.2摄像头同步录制而成[^2]。 #### 下载指南 有兴趣的研究人员可以通过注册账户来访问该数据集。具体流程涉及提交申请表格并同意发布的条款与条件。一旦请求得到验证批准,申请人将获得用于下载两个版本——即“NTU RGB+D”及其扩展版“NTU RGB+D 120”的唯一登录凭证[^1]。 #### 主要特征描述 - **多模态记录**:提供四种不同类型的感知信息—彩色图像(RGB)、距离测量(Depth Map)、骨骼姿态(Skeleton Data),还有近红外光谱(Infrared Video)。 - **高分辨率素材**:RGB视频采用全高清标准(1920x1080),而其他两种视觉形式则保持一致的空间维度(512x424)。这使得即使是在复杂背景下也能捕捉到清晰的动作细节。 - **丰富的空间覆盖范围**:利用三台摄像机从多个角度同时拍摄同一场景,从而增强了对于人体运动的理解能力,并减少了遮挡问题的影响。 - **精确的骨骼追踪**:每帧内可检测多达25个人体关键部位的位置坐标,形成完整的三维结构表示,这对于分析特定姿势或手势非常有用。 ```python import numpy as np # 假设我们有一个包含单个动作实例的数据文件 'sample_data.npz' data = np.load('sample_data.npz') rgb_video = data['rgb'] # 彩色视频数组 (T,H,W,C) depth_maps = data['depth'] # 深度映射数组 (T,H,W) skeletons = data['skel'] # 骨骼数据矩阵 (T,J,D), J=25 关节点数, D=3 维度(x,y,z) print(f"RGB video shape: {rgb_video.shape}") print(f"Depth maps shape: {depth_maps.shape}") print(f"Skeleton joints shape: {skeletons.shape}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值