DeepONet:通过深度学习学习非线性算子的源代码
简介
本仓库包含了一篇关于利用DeepONet学习非线性算子的论文的源代码。DeepONet是一种深度学习框架,专门用于学习非线性算子。本源代码仓库中的代码主要使用Python 3编写,同时也包含了一部分Matlab(R2019a版本)代码。
系统要求
- Python 3
- DeepXDE库
- 可选:若使用CNN,需安装Matlab和TensorFlow 1;若使用Seq2Seq,需安装PyTorch
安装指南
- 安装Python 3
- 安装DeepXDE库
- 若使用CNN:
- 安装Matlab(R2019a版本)
- 安装TensorFlow 1
- 若使用Seq2Seq:
- 安装PyTorch
安装过程可能需要10分钟到1个小时。
使用说明
在完成安装后,您可以按照以下步骤进行操作:
- 打开
deeponet_pde.py
文件 - 在
main()
和ode_system()
函数中,根据注释选择相应的参数和设置 - 运行
deeponet_pde.py
,程序将首先生成两个数据集(训练集和测试集),然后开始训练DeepONet - 训练和测试的均方误差(MSE)将显示在屏幕上
- 当训练开始时,标准输出将显示“Building operator neural network...”
注意
在使用过程中,请确保您的环境满足上述系统要求,并按照安装指南正确安装所需的库。同时,请确保在操作过程中遵循注释中的指导。