DeepONet:通过深度学习学习非线性算子的源代码

DeepONet:通过深度学习学习非线性算子的源代码

【下载地址】DeepONet通过深度学习学习非线性算子的源代码 DeepONet是一个基于深度学习的开源项目,专注于学习非线性算子。该项目提供了完整的Python 3源代码,并支持Matlab集成,适用于复杂系统的建模与仿真。通过DeepXDE库的支持,用户可以轻松构建和训练神经网络,解决偏微分方程等非线性问题。项目还支持CNN和Seq2Seq模型,满足不同场景需求。安装简单,使用灵活,适合科研人员和开发者探索深度学习在非线性算子领域的应用。无论是理论研究还是实际应用,DeepONet都提供了强大的工具和清晰的指导,助您快速上手并取得成果。 【下载地址】DeepONet通过深度学习学习非线性算子的源代码 项目地址: https://gitcode.com/Universal-Tool/d1224

简介

本仓库包含了一篇关于利用DeepONet学习非线性算子的论文的源代码。DeepONet是一种深度学习框架,专门用于学习非线性算子。本源代码仓库中的代码主要使用Python 3编写,同时也包含了一部分Matlab(R2019a版本)代码。

系统要求

  • Python 3
  • DeepXDE库
  • 可选:若使用CNN,需安装Matlab和TensorFlow 1;若使用Seq2Seq,需安装PyTorch

安装指南

  1. 安装Python 3
  2. 安装DeepXDE库
  3. 若使用CNN:
    • 安装Matlab(R2019a版本)
    • 安装TensorFlow 1
  4. 若使用Seq2Seq:
    • 安装PyTorch

安装过程可能需要10分钟到1个小时。

使用说明

在完成安装后,您可以按照以下步骤进行操作:

  1. 打开deeponet_pde.py文件
  2. main()ode_system()函数中,根据注释选择相应的参数和设置
  3. 运行deeponet_pde.py,程序将首先生成两个数据集(训练集和测试集),然后开始训练DeepONet
  4. 训练和测试的均方误差(MSE)将显示在屏幕上
  5. 当训练开始时,标准输出将显示“Building operator neural network...”

注意

在使用过程中,请确保您的环境满足上述系统要求,并按照安装指南正确安装所需的库。同时,请确保在操作过程中遵循注释中的指导。

【下载地址】DeepONet通过深度学习学习非线性算子的源代码 DeepONet是一个基于深度学习的开源项目,专注于学习非线性算子。该项目提供了完整的Python 3源代码,并支持Matlab集成,适用于复杂系统的建模与仿真。通过DeepXDE库的支持,用户可以轻松构建和训练神经网络,解决偏微分方程等非线性问题。项目还支持CNN和Seq2Seq模型,满足不同场景需求。安装简单,使用灵活,适合科研人员和开发者探索深度学习在非线性算子领域的应用。无论是理论研究还是实际应用,DeepONet都提供了强大的工具和清晰的指导,助您快速上手并取得成果。 【下载地址】DeepONet通过深度学习学习非线性算子的源代码 项目地址: https://gitcode.com/Universal-Tool/d1224

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏标沛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值