- DeepONet 架构与数据处理
本文章实现的代码及其实验结果是基于 DeepONet(Deep Operator Network)框架,用于求解三维瞬态固体力学问题。DeepONet 通过两个子网络——分支网络(BranchNet)和主干网络(TrunkNet)——实现对复杂算子的近似。分支网络处理输入函数(如初始条件或边界条件),主干网络处理空间-时间坐标(如 x, y, z, t),两者输出通过内积结合生成预测结果。代码中,数据生成器(SolidMechanicsDataset)创建模拟数据,包含随机生成的 10 维分支输入和规范化到 [-1, 1] 的 4 维时空输入(x, y, z, t),真实解通过 sin(πx) * cos(πy) * exp(-t)
【深度学习驱动流体力学】DeepONet求解三维瞬态固体力学的实现方法与完整代码实验结果展示
于 2025-03-19 09:21:48 首次发布