【深度学习驱动流体力学】DeepONet求解三维瞬态固体力学的实现方法与完整代码实验结果展示

在这里插入图片描述

在这里插入图片描述

  1. DeepONet 架构与数据处理
    本文章实现的代码及其实验结果是基于 DeepONet(Deep Operator Network)框架,用于求解三维瞬态固体力学问题。DeepONet 通过两个子网络——分支网络(BranchNet)和主干网络(TrunkNet)——实现对复杂算子的近似。分支网络处理输入函数(如初始条件或边界条件),主干网络处理空间-时间坐标(如 x, y, z, t),两者输出通过内积结合生成预测结果。代码中,数据生成器(SolidMechanicsDataset)创建模拟数据,包含随机生成的 10 维分支输入和规范化到 [-1, 1] 的 4 维时空输入(x, y, z, t),真实解通过 sin(πx) * cos(πy) * exp(-t)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值