LangGraph 安装和配置指南
langgraph 项目地址: https://gitcode.com/gh_mirrors/la/langgraph
1. 项目基础介绍和主要编程语言
项目介绍
LangGraph 是一个用于构建具有状态的多参与者应用程序的库,主要用于创建代理和多代理工作流。它提供了对应用程序流程和状态的细粒度控制,支持循环和条件分支,并且具有内置的持久化功能,适用于需要高级人机交互和记忆功能的场景。
主要编程语言
LangGraph 主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
关键技术
- LLMs(大型语言模型):用于构建多参与者应用程序。
- 持久化:自动保存图中的每个步骤的状态。
- 循环和分支:支持在应用程序中实现循环和条件分支。
- 人机交互:支持在图执行过程中中断以批准或编辑代理的下一步行动。
框架
- LangChain:LangGraph 是 LangChain 的一部分,但可以独立使用。
- NetworkX:LangGraph 的公共接口受到 NetworkX 的启发。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 安装 Python:确保你的系统上安装了 Python 3.7 或更高版本。你可以从 Python 官方网站 下载并安装。
- 安装 pip:pip 是 Python 的包管理工具,通常随 Python 一起安装。如果没有,请参考 pip 安装指南。
详细安装步骤
步骤 1:克隆项目仓库
首先,你需要从 GitHub 上克隆 LangGraph 项目仓库到本地。
git clone https://github.com/langchain-ai/langgraph.git
cd langgraph
步骤 2:创建虚拟环境(可选)
为了隔离项目依赖,建议创建一个虚拟环境。
python3 -m venv venv
source venv/bin/activate # 在 Windows 上使用 `venv\Scripts\activate`
步骤 3:安装依赖
使用 pip 安装项目所需的依赖。
pip install -r requirements.txt
步骤 4:安装 LangGraph
在项目根目录下,使用 pip 安装 LangGraph。
pip install -U langgraph
步骤 5:配置环境变量(可选)
如果你需要使用 LangSmith 进行最佳的可观察性,可以设置以下环境变量。
export LANGSMITH_TRACING=true
export LANGSMITH_API_KEY=lsv2_sk_
步骤 6:运行示例
LangGraph 提供了一个简单的示例,你可以运行它来验证安装是否成功。
python examples/simple_agent.py
结束语
通过以上步骤,你应该已经成功安装并配置了 LangGraph。你可以根据项目文档进一步探索其功能和使用方法。