一款只有十几兆的 Markdown AI 笔记应用

NoteGen 是一款的跨端的 Markdown 笔记应用,致力于使用 AI 建立记录和写作的桥梁,将碎片化知识整理成一篇可读的笔记。

为什么选择 NoteGen?

  • 轻量,安装包仅十几兆,免费且无任何广告,无任何捆绑。
  • 跨端,支持 Mac、Windows、Linux,得益于 Tauri2 的跨平台能力,未来将支持 IOS、Android。
  • 支持截图文本插图文件链接等多种记录方式,满足各类场景的碎片化记录需求。
  • 默认支持本地离线使用,原生 Markdown(.md) 作为存储格式,同时支持实时同步到 Github 私有仓库,支持历史回滚。
  • AI 加持,可配置 ChatGPT、Gemini、Ollama、LM Studio、DeepSeek 等多种模型,支持自定义配置使用第三方模型。

截图

记录:

record

写作:

writing

深色模式:

dark

从记录到写作

常规的笔记应用,通常不会提供记录的功能,用户需要手动进行复制粘贴的操作进行记录,大大降低了记录的效率,而面对零散的记录内容时,更是需要花费大量的精力进行整理。

NoteGen 分为记录写作两个页面,其关系是:

  • 记录可以整理为笔记,转移至写作页面进行深度编写。
  • 写作时可以随时插入记录。

记录

记录功能类似 AI 聊天机器人,但与其对话时可以关联已记录的内容,将对话模式切换为整理模式,可以将记录整理成一篇可读的笔记。

以下这些辅助功能可以帮助你更好地进行记录:

  • 标签,用于区分不同的记录场景。
  • 面具,支持自定义 prompt,精准控制你的 AI 助手。
  • 剪贴板助手,可以自动识别剪贴板中的文本或图片,记录到列表中。

写作

写作是分为文件管理器Markdown 编辑器两个部分。

文件管理器

  • 支持管理本地 Markdown 文件和 Github 的同步文件。
  • 支持无限层级目录。
  • 支持多种排序方式。

Markdown 编辑器

  • 支持所见即所得、即时渲染、分屏预览三种模式。
  • 支持版本控制,可以回溯历史记录。
  • 支持 AI 辅助,可以进行对话、续写、润色、翻译功能。
  • 支持图床,可以将图片上传至图床,并转换为 Markdown 图片链接。
  • 支持 HTML、Markdown 转换,可以复制浏览器内容,自动转换为 Markdown 格式。
  • 支持大纲、数学公式、脑图、图表、流程图、甘特图、时序图、五线谱、多媒体、语音阅读、标题锚点、代码高亮及复制、graphviz 渲染、plantumlUML 图。
  • 支持实时本地保存内容,延时(10s 未进行编辑)自动同步,历史回滚。

其他

  • 全局搜索,可以快速搜索并跳转至指定的内容。
  • 图床管理,可以方便的管理图床仓库的内容。
  • 主题与外观,支持深色主题,支持 Markdown、代码等外观设置。
  • 支持国际化,暂支持中文、英文。

如何使用?

下载

目前支持 Mac、Windows、Linux,得益于 Tauri2 的跨平台能力,未来将支持 IOS、Android。

下载 NoteGen (alpha)

增强

笔记本身可以无配置直接使用,如果你想得到更好的体验,请打开设置页面,对 AI 和同步进行配置。

交流群

欢迎加入 NoteGen 交流群,这里你可以向我提出问题,分享使用心得,或者提出改进建议。也可以以学习 Tauri 为目的,和我一起交流。

扫码加入交流群,如果二维码失效,可以加微信 xu461229187 进群。

Contribute

NoteGen 使用以下技术栈实现:

参与贡献:

<think>嗯,用户想了解Python零基础的学習路线。首先,我需要确定用户是完全没有编程经验的新手,还是有其他语言的经验但没接触过Python。不过题目里说是零基础,所以应该按完全新手来处理。 接下来,我得整理一个结构清晰的步骤,从基础到进阶,分阶段介绍。用户可能希望知道每个阶段需要学什么,以及推荐的资源或者学习方法。同时,可能还需要包括实践项目和常见问题。 首先,基础知识部分。应该包括Python的安装、基础语法、数据类型、流程控制、函数和模块这些内容。要强调动手实践的重要性,比如安装Python环境,写第一个程序。 然后是核心进阶,可能涉及数据结构、文件操作、异常处理、面向对象编程,还有常用的内置模块。这部分需要详细说明每个主题的关键点,比如列表、字典的使用,文件读写的方法,类和对象的概念。 接下来是应用方向,用户可能对Python的不同应用领域感兴趣,比如Web开发、数据分析、自动化脚本、爬虫或者人工智能。这里需要简要介绍每个方向需要的库或框架,比如Django、Flask、Pandas、Requests等,但不要太过深入,避免让新手感到压力。 实践项目部分很重要,通过实际项目巩固知识。可以推荐几个小项目,比如计算器、待办事项应用、数据分析报告、爬虫例子,或者简单的机器学习模型。这些项目能帮助用户将所学知识综合运用。 学习资源方面,需要推荐一些适合新手的书籍、在线课程和社区。比如《Python编程:从入门到实践》、菜鸟教程、Coursera的课程,还有GitHub和Stack Overflow这样的平台。资源的选择要权威且易于获取。 常见问题部分,用户可能会担心数学不好、英语差或者遇到错误无法解决。需要给予鼓励,指出Python对数学要求不高,工具和翻译软件可以辅助英语,调试技巧的重要性,以及持续练习的必要性。 最后,学习建议要强调坚持和项目实践,参与社区,定期复习。这部分能帮助用户保持学习动力,避免半途而废。 需要注意,回答要使用中文,结构清晰,分点说明。确保LaTeX格式正确,行内公式用$...$,独立公式用$$...$$,但用户的问题里没有涉及太多数学内容,可能不需要太多公式,不过如果有示例代码或术语,可能需要适当标注。 另外,避免使用Markdown格式,用自然的分段和编号。检查是否有系统级指令中提到的格式要求,比如正确的LaTeX语法,但用户的问题可能不需要太多数学表达式,所以可能这部分不用太担心。不过要确保所有技术术语或代码示例正确无误。 总之,整理出一个由浅入深的学习路线,涵盖基础、进阶、应用方向、项目实践、资源和常见问题,结构清晰,适合零基础用户理解。需要确保语言简洁,建议具体,避免信息过载,让用户能够一步步跟随学习。</think>以下是针对零基础学习Python的清晰分阶段路线,结合核心知识点与实践建议: --- ### 一、基础知识阶段(1-2周) 1. **环境搭建** - 安装Python(推荐[Python官网](https://www.python.org/)最新稳定版) - 配置开发工具:初学者可用IDLE或VSCode+Python插件。 2. **基础语法** - 变量与数据类型:`int`, `float`, `str`, `bool` - 运算符:算术(`+`, `-`, `*`, `/`)、比较(`==`, `>`) - 输入输出:`print()`, `input()` - 代码注释:`#`单行注释,`'''...'''`多行注释 3. **流程控制** - 条件语句:`if-elif-else` - 循环语句:`for`循环(如遍历列表)、`while`循环 - 示例: ```python for i in range(5): if i % 2 == 0: print(f"{i}是偶数") ``` --- ### 二、核心进阶阶段(2-4周) 1. **数据结构** - 列表(`list`):增删改查、切片 - 字典(`dict`):键值对操作 - 元组(`tuple`)与集合(`set`) 2. **函数与模块** - 定义函数:`def func_name():` - 参数传递:位置参数、默认参数 - 模块导入:`import math`,第三方库安装(`pip install`) 3. **文件与异常处理** - 文件操作:`open()`读写文本/CSV文件 - 异常捕获:`try-except`块 4. **面向对象编程(OOP)** - 类与对象:`class Dog:`,`__init__`方法 - 继承与多态 --- ### 三、应用方向选择(按兴趣选择1-2个方向) | **方向** | **关键技术** | **推荐库/框架** | |----------------|-------------------------------------|-----------------------------------| | **Web开发** | 后端逻辑、API设计 | Django、Flask、FastAPI | | **数据分析** | 数据清洗、可视化 | Pandas、NumPy、Matplotlib | | **自动化脚本** | 文件批量处理、定时任务 | os模块、schedule库 | | **爬虫** | 网页数据抓取 | Requests、BeautifulSoup、Scrapy | | **人工智能** | 机器学习/深度学习基础 | Scikit-learn、TensorFlow、PyTorch | --- ### 四、实践项目推荐 1. **基础巩固** - 计算器:支持加减乘除 - 待办事项清单(命令行版) 2. **进阶应用** - 爬取天气数据并生成图表 - 用Flask搭建个人博客 3. **综合挑战** - 数据分析:分析电影数据集并输出报告 - 简易机器学习模型:鸢尾花分类(Scikit-learn) --- ### 五、学习资源推荐 - **书籍**:《Python编程:从入门到实践》《笨方法学Python》 - **在线教程**:[菜鸟教程](https://www.runoob.com/python)、[廖雪峰Python教程](https://www.liaoxuefeng.com/) - **社区**:Stack Overflow、GitHub开源项目、知乎Python话题 --- ### 六、常见问题解答 1. **数学不好能学Python吗?** - 大多数应用场景无需高深数学,数据分析/AI方向需补充统计学基础。 2. **英语差怎么办?** - 编程关键词仅几十个,IDE支持中文提示,可配合翻译工具。 3. **代码报错如何解决?** - 逐行检查错误信息(控制台输出),善用`print()`调试,搜索错误代码+关键词。 --- ### 七、学习建议 - **每日坚持**:哪怕30分钟写代码,保持手感。 - **项目驱动**:学完基础后尽快做小项目,避免纯理论学习。 - **参与社区**:提问时附上代码与报错信息,效率更高。 - **定期复盘**:每阶段整理笔记,复现核心代码。 通过以上路线,3-6个月可掌握Python基础并完成简单项目,后续根据方向深入即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值