概率论与随机过程笔记(1):样本空间与概率

本文是概率论与随机过程笔记的第一部分,主要介绍样本空间、概率模型、条件概率和全概率定理。通过集合概念引入样本空间,探讨概率律及其性质,讲解条件概率和独立性的概念,为理解随机过程打下基础。
摘要由CSDN通过智能技术生成
概率论与随机过程笔记(1):样本空间与概率
2019-10-27

这部分的笔记依据Dimitri P. Bertsekas和John N. Tsitsiklis的《概率导论》第1章内容(不包括1.6节组合数学的内容)。鉴于线性代数的笔记中大量latex公式输入中,切换中英文输入法浪费了很多时间,所以概率笔记会用英文完成。

1.1 集合(sets)

【集合的定义】A set is a collection of objects, which are the elements of the set. If S S S is a set and x x x is an element of S S S, we write x ∈ S x \in S xS. If x x x is not an element of S S S, we write x ∉ S x \notin S x/S. A set can have no elements, in which case it is called the empty set, denoted by ∅ \varnothing

【集合的表示方法】Sets can be specified in a variety of ways:
S = { x 1 , x 2 , ⋯   , x n } S=\{x_1,x_2,\cdots,x_n\} S={ x1,x2,,xn} S = { x 1 , x 2 , ⋯   } S=\{x_1,x_2,\cdots\} S={ x1,x2,} { x ∣ x    s a t i s f i e s    P } \{x \vert x \; satisfies \; P \} { xxsatisfiesP}
The symbol “ ∣ \vert ” is to be read as “such that.”

【集合之间的关系】If every element of a set S S S is also an element of a set T T T, we say that S S S is a subset of T T T, and we write S ⊂ T S \subset T ST or T ⊃ S T \supset S TS. If S ⊂ T S \subset T ST and T ⊂ S T \subset S TS, the two sets are equal, and we write S = T S = T S=T.

【空间 Ω \Omega Ω】It is also expedient to introduce a universal set, denoted by Ω \Omega Ω, which contains all objects that could conceivably be of interest in a particular context. Having specified the context in terms of a universal set Ω \Omega Ω, we only consider sets S S S that are subsets of Ω \Omega Ω.

【补集】The complement of a set S S S, with respect to the universe Ω \Omega Ω, is the set { x ∈ Ω ∣ x ∉ S } \{x\in \Omega \vert x \notin S\} { xΩx/S} of all the elements of Ω \Omega Ω that do not belong to S S S, and is denoted by S c S^c Sc. Note that Ω c = ∅ \Omega^c = \varnothing Ωc=.

【集合的交和并】The union of two sets S S S and T T T is the set of all elements that belong to S S S or T T T (or both), and is denoted by S ∪ T S \cup T ST. The intersection of two sets S S S and T T T is the set of all elements that belong to both S S S and T T T, and is denoted by S ∩ T S \cap T ST. Thus, S ∪ T = { x    ∣    x ∈ S    o r    x ∈ T } S \cup T=\{x \;\vert \;x \in S \;or \;x \in T\} ST={ xxSorxT} S ∩ T = { x    ∣    x ∈ S    a n d    x ∈ T } S \cap T=\{x \;\vert \;x \in S \;and \;x \in T\} ST={ xxSandxT} ⋃ n = 1 ∞ = S 1 ∪ S 2 ⋯ = { x    ∣    x ∈ S n    f o r    s o m e    n } \bigcup_{n=1}^\infty = S_1 \cup S_2 \cdots = \{x\;\vert\;x \in S_n \;for \;some \;n\} n=1=S1S2={ xxSnforsomen} ⋂ n = 1 ∞ = S 1 ∩ S 2 ⋯ = { x    ∣    x ∈ S n    f o r    a l l e    n } \bigcap_{n=1}^\infty = S_1 \cap S_2 \cdots = \{x\;\vert\;x \in S_n \;for \;alle \;n\} n=1=S1S2={ xxSnforallen}
【不想交 & 分割】Two sets are said to be disjoint if their intersection is empty. More generally, several sets are said to be disjoint if no two of them have a common element. A collection of sets is said to be a partition of a set S S S if the sets in the collection are disjoint and their union is S S S.

If x x x and y y y are two objects. we use ( x . y ) (x. y) (x.y) to denote the ordered pair of x x x and y y y. The set of scalars (real numbers) is denoted by R \mathbb{R} R: the set of pairs (or triplets) of scalars, i.e … the two-dimensional plane (or three-dimensional space, respectively) is denoted by R 2 \mathbb{R}^2 R2 (or R 3 \mathbb{R}^3 R3. respectively).

Sets and the associated operations are easy to visualize in terms of Venn diagrams. as illustrated in Fig. 1.1.
集合计算
【矩阵代数】Set operations have several properties, which are elementary consequences of the definitions. Some exa1nples are:

  • S ∪ T = T ∪ S S \cup T = T\cup S ST=TS
  • S ∪ ( T ∪ U ) = ( S ∪ T ) ∪ U S \cup (T \cup U) = (S \cup T) \cup U S(TU)=(ST)U
  • S ∩ ( T ∪ U ) = ( S ∩ T ) ∪ ( S ∩ U ) S \cap(T \cup U) = (S \cap T)\cup(S \cap U) S(TU)=(ST)(SU)
  • S ∪ ( T ∩ U ) = ( S ∪ T ) ∩ ( S ∪ U ) S \cup(T \cap U) = (S \cup T)\cap(S \cup U) S(TU)=(S
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值