矩阵代数(一)- 矩阵运算

小结

  1. 和与标量乘法
  2. 矩阵乘法
  3. 矩阵的乘幂
  4. 矩阵的转置

A \boldsymbol{A} A m × n m \times n m×n矩阵,即有 m m m n n n列的矩阵,则 A \boldsymbol{A} A的第 i i i行第 j j j列的元素用 a i ​ j a_i\!_j aij表示,称为 A \boldsymbol{A} A ( i , j ) (i,j) (i,j)元素。 A \boldsymbol{A} A的各列是 R m \mathbb{R}^{m} Rm中的向量,用 a 1 , ⋯   , a n \boldsymbol{a_1},\cdots,\boldsymbol{a_n} a1,,an表示,写作 A = [ a 1 ⋯ a n ] \boldsymbol{A}=\begin{bmatrix}\boldsymbol{a_1} & \cdots & \boldsymbol{a_n} \end{bmatrix} A=[a1an]
m × n m \times n m×n矩阵 A \boldsymbol{A} A的对角线元素是 a 1 ​ 1 , a 2 ​ 2 , ⋯ a_1\!_1, a_2\!_2,\cdots a11,a22,,它们组成 A \boldsymbol{A} A的主对角线。对角矩阵是一个方阵,它的非对角线元素全是0。元素全是0的 m × n m \times n m×n矩阵为零矩阵,用 0 \boldsymbol{0} 0表示。

和与标量运算

我们称两个矩阵相等,若它们有相同的维数(即有相同的行数和列数),而且对应元素相等。 A + B \boldsymbol{A}+\boldsymbol{B} A+B的每个元素就是 A \boldsymbol{A} A B \boldsymbol{B} B的对应元素相加。仅当 A \boldsymbol{A} A B \boldsymbol{B} B有相同维数, A + B \boldsymbol{A}+\boldsymbol{B} A+B才有定义。
r r r是标量而 A \boldsymbol{A} A是矩阵,则标量乘法 r A r\boldsymbol{A} rA是一个矩阵,它的每一列是 A \boldsymbol{A} A的对应列的 r r r倍。

A = [ 4 0 5 − 1 3 2 ] , B = [ 1 1 1 3 5 7 ] \boldsymbol{A}=\begin{bmatrix}4 & 0 & 5 \\ -1 & 3 & 2\end{bmatrix}, \boldsymbol{B}=\begin{bmatrix}1 & 1 & 1 \\ 3 & 5 & 7\end{bmatrix} A=[410352],B=[131517],求 A − 2 B \boldsymbol{A}-2\boldsymbol{B} A2B
解:
A − 2 B = [ 4 0 5 − 1 3 2 ] − 2 [ 1 1 1 3 5 7 ] = [ 4 0 5 − 1 3 2 ] − [ 2 2 2 6 10 14 ] = [ 2 − 2 3 − 7 − 7 − 12 ] \quad \boldsymbol{A}-2\boldsymbol{B} \\ = \begin{bmatrix}4 & 0 & 5 \\ -1 & 3 & 2\end{bmatrix} - 2\begin{bmatrix}1 & 1 & 1 \\ 3 & 5 & 7\end{bmatrix} \\ =\begin{bmatrix}4 & 0 & 5 \\ -1 & 3 & 2\end{bmatrix} - \begin{bmatrix}2 & 2 & 2 \\ 6 & 10 & 14\end{bmatrix} \\ =\begin{bmatrix}2 & -2 & 3 \\ -7 & -7 & -12\end{bmatrix} A2B=[410352]2[131517]=[410352][26210214]=[2727312]

定理1    \; A , B , C \boldsymbol{A},\boldsymbol{B},\boldsymbol{C} A,B,C是相同维数的矩阵, r r r s s s为标量,则有
a .    A + B = B + A b .    ( A + B ) + C = A + ( B + C ) c .    A + 0 = A d .    r ( A + B ) = r A + r B e .    ( r + s ) A = r A + s A f .    r ( s A ) = ( r s ) A \begin{aligned} & a.\;\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A} & & b.\;(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C}) \\ & c.\;\boldsymbol{A} + \boldsymbol{0}=\boldsymbol{A} & & d.\;r(\boldsymbol{A} + \boldsymbol{B})=r\boldsymbol{A} + r\boldsymbol{B} \\ & e.\;(r+s)\boldsymbol{A}=r\boldsymbol{A}+s\boldsymbol{A} & & f.\;r(s\boldsymbol{A})=(rs)\boldsymbol{A} \end{aligned} a.A+B=B+Ac.A+0=Ae.(r+s)A=rA+sAb.(A+B)+C=A+(B+C)d.r(A+B)=rA+rBf.r(sA)=(rs)A

矩阵乘法

A \boldsymbol{A} A m × n m \times n m×n矩阵, B \boldsymbol{B} B n × p n \times p n×p矩阵,用 b 1 , ⋯   , b p \boldsymbol{b_1},\cdots,\boldsymbol{b_p} b1,,bp表示 B \boldsymbol{B} B的各列,则乘积 A B \boldsymbol{A}\boldsymbol{B} AB m × p m \times p m×p矩阵,它的各列是 A b 1 , ⋯   , A b p \boldsymbol{Ab_1},\cdots,\boldsymbol{Ab_p} Ab1,,Abp。即
A B = A [ b 1 ⋯ b p ] = [ A b 1 ⋯ A b p ] \boldsymbol{A}\boldsymbol{B}=\boldsymbol{A}\begin{bmatrix}\boldsymbol{b_1} & \cdots & \boldsymbol{b_p}\end{bmatrix}=\begin{bmatrix}\boldsymbol{Ab_1} & \cdots & \boldsymbol{Ab_p}\end{bmatrix} AB=A[b1bp]=[Ab1Abp]

计算 A B \boldsymbol{A}\boldsymbol{B} AB,其中 A = [ 2 3 1 − 5 ] , B = [ 4 3 6 1 − 2 3 ] \boldsymbol{A}=\begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix},\boldsymbol{B}=\begin{bmatrix}4 & 3 & 6 \\ 1 & -2 & 3\end{bmatrix} A=[2135],B=[413263]
解:利用(行-向量规则)规则计算 A b 1 , A b 2 , A b 3 \boldsymbol{Ab_1},\boldsymbol{Ab_2},\boldsymbol{Ab_3} Ab1,Ab2,Ab3
A b 1 = [ 2 3 1 − 5 ] [ 4 1 ] = [ 2 × 4 + 3 × 1 1 × 4 + ( − 5 ) × 1 ] = [ 11 − 1 ] A b 1 = [ 2 3 1 − 5 ] [ 3 − 2 ] = [ 2 × 3 + 3 × ( − 2 ) 1 × 3 + ( − 5 ) × ( − 2 ) ] = [ 0 13 ] A b 1 = [ 2 3 1 − 5 ] [ 6 3 ] = [ 2 × 6 + 3 × 3 1 × 6 + ( − 5 ) × 3 ] = [ 21 − 9 ] A B = [ A b 1 A b 2 A b 3 ] = [ 11 0 21 − 1 13 − 9 ] \begin{aligned} & \boldsymbol{Ab_1}=\begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}4 \\ 1 \end{bmatrix} =\begin{bmatrix}2 \times 4 + 3 \times 1 \\ 1 \times 4 + (-5) \times 1\end{bmatrix}=\begin{bmatrix}11 \\ -1\end{bmatrix} \\ & \boldsymbol{Ab_1}=\begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}3 \\ -2\end{bmatrix} =\begin{bmatrix}2 \times 3 + 3 \times (-2) \\ 1 \times 3 + (-5) \times (-2)\end{bmatrix}=\begin{bmatrix}0 \\ 13\end{bmatrix} \\ & \boldsymbol{Ab_1}=\begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}6 \\ 3\end{bmatrix} =\begin{bmatrix}2 \times 6 + 3 \times 3 \\ 1 \times 6 + (-5) \times 3\end{bmatrix}=\begin{bmatrix}21 \\ -9\end{bmatrix} \\ & \boldsymbol{A}\boldsymbol{B} = \begin{bmatrix}\boldsymbol{Ab_1} & \boldsymbol{Ab_2} & \boldsymbol{Ab_3}\end{bmatrix}=\begin{bmatrix}11 & 0 & 21 \\ -1 & 13 & -9\end{bmatrix} \end{aligned} Ab1=[2135][41]=[2×4+3×11×4+(5)×1]=[111]Ab1=[2135][32]=[2×3+3×(2)1×3+(5)×(2)]=[013]Ab1=[2135][63]=[2×6+3×31×6+(5)×3]=[219]AB=[Ab1Ab2Ab3]=[111013219]

A B \boldsymbol{A}\boldsymbol{B} AB的每一列都是 A \boldsymbol{A} A的各列的线性组合,以 B \boldsymbol{B} B的对应列的元素为权。

计算 A B \boldsymbol{A}\boldsymbol{B} AB的行列法则
若乘积 A B \boldsymbol{A}\boldsymbol{B} AB有定义,则 A B \boldsymbol{A}\boldsymbol{B} AB的第 i i i行第 j j j列的元素是 A \boldsymbol{A} A的第 i i i行与第 j j j列对应元素乘积之和。若 ( A B ) i ​ j (\boldsymbol{A}\boldsymbol{B})_i\!_j (AB)ij表示 A B \boldsymbol{A}\boldsymbol{B} AB ( i , j ) (i,j) (i,j)元素, A \boldsymbol{A} A m × n m \times n m×n矩阵,则 ( A B ) i ​ j = a i ​ 1 b 1 ​ j + ⋯ + a i ​ n b n ​ j (\boldsymbol{A}\boldsymbol{B})_i\!_j=a_i\!_1b_1\!_j+\cdots+a_i\!_nb_n\!_j (AB)ij=ai1b1j++ainbnj

A B \boldsymbol{A}\boldsymbol{B} AB,其中 A = [ 2 − 5 0 − 1 3 − 4 6 − 8 − 7 − 3 0 9 ] , B = [ 4 − 6 7 1 3 2 ] \boldsymbol{A}=\begin{bmatrix}2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9\end{bmatrix}, \boldsymbol{B}=\begin{bmatrix}4 & -6 \\ 7 & 1 \\ 3 & 2\end{bmatrix} A=216353800479,B=473612
解:
A B = [ 2 − 5 0 − 1 3 − 4 6 − 8 − 7 − 3 0 9 ] [ 4 − 6 7 1 3 2 ] = [ 2 × 4 + ( − 5 ) × 7 + 0 × 3 2 × ( − 6 ) + ( − 5 ) × 1 + 0 × 2 ( − 1 ) × 4 + 3 × 7 + ( − 4 ) × 3 ( − 1 ) × ( − 6 ) + 3 × 1 + ( − 4 ) × 2 6 × 4 + ( − 8 ) × 7 + ( − 7 ) × 3 6 × ( − 6 ) + ( − 8 ) × 1 + ( − 7 ) × 2 ( − 3 ) × 4 + 0 × 7 + 9 × 3 ( − 3 ) × ( − 6 ) + 0 × 1 + 9 × 2 ] = [ − 27 − 17 5 1 − 53 − 58 15 36 ] \begin{aligned} \boldsymbol{A}\boldsymbol{B} &= \begin{bmatrix}2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix}\begin{bmatrix}4 & -6 \\ 7 & 1 \\ 3 & 2\end{bmatrix} \\ &= \begin{bmatrix}2 \times 4 + (-5) \times 7 + 0 \times 3 & 2 \times (-6) + (-5) \times 1 + 0 \times 2 \\ (-1) \times 4 + 3 \times 7 + (-4) \times 3 & (-1) \times (-6) + 3 \times 1 + (-4) \times 2 \\ 6 \times 4 + (-8) \times 7 + (-7) \times 3 & 6 \times (-6) + (-8) \times 1 + (-7) \times 2 \\ (-3) \times 4 + 0 \times 7 + 9 \times 3 & (-3) \times (-6) + 0 \times 1 + 9 \times 2\end{bmatrix} \\ &= \begin{bmatrix}-27 & -17 \\ 5 & 1 \\ -53 & -58 \\ 15 & 36\end{bmatrix} \end{aligned} AB=216353800479473612=2×4+(5)×7+0×3(1)×4+3×7+(4)×36×4+(8)×7+(7)×3(3)×4+0×7+9×32×(6)+(5)×1+0×2(1)×(6)+3×1+(4)×26×(6)+(8)×1+(7)×2(3)×(6)+0×1+9×2=27553151715836

矩阵乘法的性质

定理2    \; A \boldsymbol{A} A m × n m \times n m×n矩阵, I m \boldsymbol{I}_m Im表示 m × m m \times m m×m单位矩阵, I n \boldsymbol{I}_n In表示 n × n n \times n n×n单位矩阵, r r r为标量, B \boldsymbol{B} B C \boldsymbol{C} C的维数是下列各式的乘积有定义。
a .    A ( B C ) = ( A B ) C b .    A ( B + C ) = A C + B C c .    ( B + C ) A = B A + B C d .    r ( A B ) = ( r A ) B = A ( r B ) e .    I m A = A = A I n \begin{aligned} & a.\;\boldsymbol{A}(\boldsymbol{B}\boldsymbol{C})=(\boldsymbol{AB})\boldsymbol{C} & & b.\;\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{AC}+\boldsymbol{BC} \\ & c.\;(\boldsymbol{B}+\boldsymbol{C})\boldsymbol{A}=\boldsymbol{BA}+\boldsymbol{BC} & & d.\;r(\boldsymbol{A}\boldsymbol{B})=(r\boldsymbol{A})\boldsymbol{B}=\boldsymbol{A}(r\boldsymbol{B}) \\ & e.\;\boldsymbol{I}_m\boldsymbol{A}=\boldsymbol{A}=\boldsymbol{A}\boldsymbol{I}_n \end{aligned} a.A(BC)=(AB)Cc.(B+C)A=BA+BCe.ImA=A=AInb.A(B+C)=AC+BCd.r(AB)=(rA)B=A(rB)

注意:

  1. 一般情况下, A B ≠ B A \boldsymbol{AB}\neq\boldsymbol{BA} AB̸=BA
  2. A B = A C \boldsymbol{AB}=\boldsymbol{AC} AB=AC,一般情况下, B = C \boldsymbol{B}=\boldsymbol{C} B=C并不成立
  3. 若乘积 A B \boldsymbol{AB} AB是零矩阵,一般情况下,不能断定 A = 0 \boldsymbol{A}=\boldsymbol{0} A=0 B = 0 \boldsymbol{B}=\boldsymbol{0} B=0

矩阵的乘幂

A \boldsymbol{A} A n × n n \times n n×n矩阵, k k k是正整数,则 A k \boldsymbol{A}^{k} Ak表示 k k k A \boldsymbol{A} A的乘积:
A k = A ⋯ A ⎵ k 个 \boldsymbol{A}^{k}=\underbrace{\boldsymbol{A}\cdots\boldsymbol{A}}_{k个} Ak=k AA

A \boldsymbol{A} A不是零矩阵,且 x \boldsymbol{x} x属于 R n \mathbb{R}^{n} Rn,则 A k x \boldsymbol{A}^{k}\boldsymbol{x} Akx表示 x \boldsymbol{x} x A \boldsymbol{A} A连续左乘 k k k次。若 k = 0 k=0 k=0,则 A 0 x \boldsymbol{A}^{0}\boldsymbol{x} A0x就是 x \boldsymbol{x} x本身。因此 A 0 \boldsymbol{A}^{0} A0被解释为单位矩阵。

矩阵的转置

给定 m × n m \times n m×n矩阵 A \boldsymbol{A} A,则 A \boldsymbol{A} A转置是一个 n × m n \times m n×m矩阵,用 A T \boldsymbol{A}^{T} AT表示,它的列是由 A \boldsymbol{A} A的对应行构成的。

A = [ 1 1 1 1 − 3 5 − 2 7 ] \boldsymbol{A}=\begin{bmatrix}1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7\end{bmatrix} A=[13151217],则 A T = [ 1 − 3 1 5 1 − 2 1 7 ] \boldsymbol{A}^{T}=\begin{bmatrix}1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7\end{bmatrix} AT=11113527

定理3    \; A \boldsymbol{A} A B \boldsymbol{B} B表示矩阵, r r r表示标量,其维数使下列和与积有定义,则
a .    ( A T ) T = A b .    ( A + B ) T = A T + B T c .    ( r A ) T = r A T d .    ( A B ) T = B T A T \begin{aligned} & a.\;(\boldsymbol{A}^{T})^{T}=\boldsymbol{A} & & b.\;(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T} \\ & c.\;(r\boldsymbol{A})^{T}=r\boldsymbol{A}^{T} & & d.\;(\boldsymbol{A}\boldsymbol{B})^{T}=\boldsymbol{B}^{T}\boldsymbol{A}^{T} \end{aligned} a.(AT)T=Ac.(rA)T=rATb.(A+B)T=AT+BTd.(AB)T=BTAT

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值