中科院:通过内部表示优化LLM上下文利用

在这里插入图片描述

📖标题:Exploiting Contextual Knowledge in LLMs through V-usable Information based Layer Enhancement
🌐来源:arXiv, 2504.15630

🌟摘要

🔸大型语言模型(LLM)在各种任务中表现出了卓越的能力,但它们经常难以正确反映上下文知识的上下文忠实性。虽然现有的方法侧重于增强解码策略,但它们忽略了LLM内部状态中如何处理上下文信息的基本机制。因此,LLM充分利用上下文知识的能力仍然有限。
🔸在这篇论文中,我们提出了上下文感知层增强(CaLE),这是一种新的干预方法,可以提高LLM内部表示中上下文知识的利用率。通过采用V-usable信息分析,CaLE在最优层策略性地放大了上下文信息的增长,从而丰富了最后一层的表示。
🔸我们的实验表明,CaLE有效地提高了问答任务中的上下文忠实生成,特别是在涉及未知或冲突上下文知识的场景中。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在生成过程中如何有效利用上下文信息,特别是在应对外部知识时的保真度不足?
🔸主要贡献:论文提出了一种上下文感知层增强(CaLE)的方法,通过对模型内部表示的上下文信息进行增强,以提高LLM在问答任务中的上下文保真性。

📝重点思路

🔸通过分析不同模型层之间的上下文信息流,提出了一种度量模型内部状态对生成回答保真度贡献的方法。
🔸基于V-usable信息,CaLE方法识别出上下文感知层,并通过放大或残差连接增强该层的表示。
🔸引入两种层增强方法:残差连接(CaLE-R)和表示放大(CaLE-A),以提升最终层的上下文信息。
🔸对多种问答数据集进行实验,包括CounterFact、Natural Questions、SQuAD和StrategyQA,验证CaLE的有效性。

🔎分析总结

🔸实验结果表明,CaLE显著提高了下游任务中的上下文保真生成能力,尤其是在处理未知或冲突的上下文知识时效果显著。
🔸CaLE方法对上下文利用的增强是独立于现有解码策略的,表明其通用性。
🔸通过对比不同的层增强方法,发现CaLE-A在处理新事实知识时表现更为优越,而CaLE-R在生成一致的内部和外部知识方面表现较好。
🔸无论采用哪种解码方法,CaLE均表现出较高的准确性,显示出其在不同模型架构下的稳健性和有效性。

💡个人观点

论文的核心是识别出LLM上下文感知层,利用模型内部状态的上下文信息进行层级增强。

🧩附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值