基于粒子群算法的电力系统最优潮流 以IEEE30节点的六机为对象,建立考虑功率平衡、机组爬坡约束、出力限制约束的电力系统经济调度模型,采用粒子群算法对模型进行求解,得到六个机组的最优运行计划,确定系统最优运行成本。
YID:9650668667994429
ocean
基于粒子群算法的电力系统最优潮流
摘要:本文介绍了一个基于粒子群优化算法(PSO)的电力系统调度程序,用于优化电力系统中火电、风电和光伏发电机组的出力,以实现最小化发电成本和最小化失负荷量的目标。文章首先介绍了PSO算法的基本原理和应用场景,然后详细说明了程序的主要功能和实现思路,最后给出了计算结果和优化效果的分析。
关键词:粒子群算法;电力系统调度;最优潮流;发电成本;失负荷量
-
研究背景
电力系统是现代社会不可或缺的基础设施之一,其运行效率和经济性对于保障电力供应和降低能源成本具有重要意义。传统的电力系统调度方法存在问题,如计算复杂度高、收敛速度慢等。因此,引入优化算法来进行电力系统调度成为一个研究热点。 -
粒子群算法原理
粒子群算法是一种基于群体智能的优化算法,模拟了鸟群或鱼群等动物群体在群体中搜索最优解的行为。该算法通过迭代更新粒子的位置和速度,以找到全局最优解。 -
程序介绍
该电力系统调度程序基于粒子群算法实现,旨在优化电力系统的机组出力,以实现最小化发电成本和最小化失负荷量的目标。程序的主要功能包括加载数据、优化机组出力、计算指标和绘制曲线。
3.1 数据加载
程序首先加载电力系统的一些数据,包括机组的发电成本、负荷数据、风电数据和光伏数据。这些数据为后续的优化和计算提供基础。
3.2 优化机组出力
程序使用PSO算法对每个小时的机组出力进行优化,得到最优的机组出力方案。通过设置参数,如最大迭代次数、搜索空间维数、粒子个数等,控制粒子群算法的优化过程。
3.3 计算指标
程序计算每个小时的发电成本、失负荷量、弃风弃光量等指标,以评估优化效果。这些指标反映了电力系统的经济性和可靠性。
3.4 绘制曲线
程序绘制机组出力曲线、风电出力曲线、光伏出力曲线、负荷曲线和成本变化曲线,直观展示系统的运行状态和优化结果。
-
算法实现
程序中的核心逻辑由两个子函数实现。"pso"函数实现了PSO算法的主要逻辑,根据给定的负荷数据、初始机组出力和风光发电数据,通过迭代更新粒子的位置和速度,最终找到最优的机组出力方案。"fitness11"函数用于计算每个粒子的适应度值,综合考虑机组出力、发电成本、失负荷量等指标。 -
结果分析
通过对IEEE30节点的六机进行实验,本程序得到了最优的机组出力方案,以实现最小化发电成本和最小化失负荷量的目标。通过绘制的曲线可以看出,优化后的系统运行效率更高,成本更低。 -
总结
本文介绍了一个基于粒子群优化算法的电力系统调度程序,通过优化火电、风电和光伏发电机组的出力,实现了最小化发电成本和最小化失负荷量的目标。该程序具有一定的优化效果和应用潜力,在电力系统调度和优化领域具有一定的实用价值。
参考文献:
[1] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, 1995: 1942-1948.
[2] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
以上相关代码,程序地址:http://wekup.cn/668667994429.html