基于粒子群算法的电力系统最优潮流 以IEEE30节点的六机为对象,建立考虑功率平衡、机组爬坡约束、出力限制约束的电力系统经济调度模型,采用粒子群算法对模型进行求解,得到六个机组的最优运行计划,确定系统最优运行成本。
YID:9650668667994429
ocean
基于粒子群算法的电力系统最优潮流
摘要:本文介绍了一个基于粒子群优化算法(PSO)的电力系统调度程序,用于优化电力系统中火电、风电和光伏发电机组的出力,以实现最小化发电成本和最小化失负荷量的目标。文章首先介绍了PSO算法的基本原理和应用场景,然后详细说明了程序的主要功能和实现思路,最后给出了计算结果和优化效果的分析。
关键词:粒子群算法;电力系统调度;最优潮流;发电成本;失负荷量
-
研究背景
电力系统是现代社会不可或缺的基础设施之一,其运行效率和经济性对于保障电力供应和降低能源成本具有重要意义。传统的电力系统调度方法存在问题,如计算复杂度高、收敛速度慢等。因此,引入优化算法来进行电力系统调度成为一个研究热点。 -
粒子群算法原理
粒子群算法是一种基于群体智能的优化算法,模拟了鸟群