麦克斯韦方程组是电磁场的基石。就好比香农公式是通信领域的基石一样。不理解香农公式的奥秒就不会对通信有本质的理解。同样,如果对麦克斯韦方程理解不深,那么,对电磁场的理解就好比是练拳不练功,到头一场空。所有的公式只是一种表达方式,看问题就要抓住本质。
电磁场的处理对象是矢量空间。也就是在4维空间(包括时间)中的任意一点的值是一个矢量。当然如果只考虑三维空间,没有时间维度,那么就是一个静态的矢量场。在这个矢量场中,有两种矢量,一种是红色矢量,电场矢量,另一种是蓝色矢量,磁场矢量。如何度量和表达这些矢量在空间中的分布和他们的关系。研究者们提出了一个很有创意的思考方式,也就是矢量场的分析方法,散度和旋度。
在矢量空间中,放置一个篮球。用这个篮球的表面积分来测量其通量。这个篮球本质上是由无数个同心圆组成的,我可以叫做他为呼啦圈。当把一个呼啦圈放进一个矢量场是,只个股呼啦圈会被矢量推动而旋转。这就是环量。这个有点像小时候玩的风车(竹蜻蜓)。其实你拿到一个风车的时候,如果他在转动,就说明着一定的旋度不为0.这两个量非常生动形象的描述了矢量空间的性质。有通量,能然你转动。这两个量取极限,就是经常使用的散度和旋度。现在讲解一下麦克斯韦方程组。
首先看散度。电场的篮球曲面积分不为0.并且表明篮球内就是一个电荷量的大小。而磁场的篮球内是空的。表明,磁场是一个闭合的东西。不想电场一样,考一个点电荷就可以创造出电场。点电荷相当于无中生有。而磁场就是来多少,走多少。
再来看旋度,我的风车放进场里面,到底会不会转动。方程表明,呼啦圈的面通量变化会让呼啦圈转动(旋度不为0,就是表示会转动)。这就预言了电场和磁场的互生。
麦克斯韦方程组的另一个贡献就是预言了电磁波的存在。也就是那个位移电流。这个以后再讲。
所有电磁现象服从麦克斯韦方程组。这就是电磁场的约束条件。电磁场理论只是矢量场理论的一个子集。所以,矢量场理论才是真正普遍的数学理论。研究矢量的规律。这就是数学的深度了。
有了这个约束,会产生怎样丰富多彩的世界呢。如果更深的发问,为什么会有这个约束。这个可能是造物主的一个游戏吧。研究者目前的水平就是发现这个约束,研究这个约束,在利用这个约束。如果想改变这个约束,那你岂不就是god了。