电磁场量与介质特性量之间的关系
D = ε E , B = μ H D=\varepsilon E, B=\mu H D=εE,B=μH
式中D为电通量密度,B为磁通密度,E为电场强度,H为磁场强度。
微分形式
版本一:
{ ∇ ⋅ D = ρ 0 ∇ × E = − ∂ B ∂ t ∇ ⋅ B = 0 ∇ × H = j 0 + ∂ D ∂ t \left\{\begin{array}{c}{\nabla \cdot \boldsymbol{D}=\rho_{0}} \\ {\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}} \\ {\nabla \cdot \boldsymbol{B}=0} \\ {\nabla \times \boldsymbol{H}=\boldsymbol{j}_{0}+\frac{\partial \boldsymbol{D}}{\partial t}}\end{array}\right. ⎩⎪⎪⎨⎪⎪⎧∇⋅D=ρ0∇×E=−∂t∂B∇⋅B=0∇×H=j0+∂t∂D
(1)高斯定理
(2)法拉第电磁感应定律
(3)磁通连续性定理
(4)全电流定律
版本二:
- ∇ ⋅ E ⃗ = ρ ε 0 {\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}} ∇⋅E=ε0ρ
某处电场的散度等于电荷密度与真空介电常数之比。
- ∇ × E ⃗ = − ∂ B ⃗ ∂ t {\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}} ∇×E