麦克斯韦方程

本文详细介绍了麦克斯韦方程的微分形式、积分形式和复数形式,阐述了电磁场与介质特性之间的关系,包括电通量密度、磁通密度、电场强度和磁场强度。同时,解释了高斯定理、法拉第电磁感应定律、磁通连续性和全电流定律等关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电磁场量与介质特性量之间的关系
D = ε E , B = μ H D=\varepsilon E, B=\mu H D=εE,B=μH
式中D为电通量密度,B为磁通密度,E为电场强度,H为磁场强度。

微分形式

版本一:
{ ∇ ⋅ D = ρ 0 ∇ × E = − ∂ B ∂ t ∇ ⋅ B = 0 ∇ × H = j 0 + ∂ D ∂ t \left\{\begin{array}{c}{\nabla \cdot \boldsymbol{D}=\rho_{0}} \\ {\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}} \\ {\nabla \cdot \boldsymbol{B}=0} \\ {\nabla \times \boldsymbol{H}=\boldsymbol{j}_{0}+\frac{\partial \boldsymbol{D}}{\partial t}}\end{array}\right. D=ρ0×E=tBB=0×H=j0+tD
(1)高斯定理
(2)法拉第电磁感应定律
(3)磁通连续性定理
(4)全电流定律

版本二:

  • ∇ ⋅ E ⃗ = ρ ε 0 {\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}} E =ε0ρ

某处电场的散度等于电荷密度与真空介电常数之比。

  • ∇ × E ⃗ = − ∂ B ⃗ ∂ t {\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}} ×E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值