NVIDIA jetson xavier nx天线安装方法

  xavier最开始打开的时候天线是分开的,如果不安装天线基本收不到wifi信号,所以必须进行天线安装,这篇文章介绍下天线安装的位置:
  天线1,2左右的位置无所谓的
在这里插入图片描述
在这里插入图片描述

参考:https://blog.csdn.net/yu198991/article/details/122425412

### 安装 Miniforge 替代 Anaconda 由于 NVIDIA Jetson Xavier NX 是基于 ARM 架构的设备,而 Anaconda 的官方仓库仅提供针对 x86 架构的支持,因此无法直接在 Jetson Xavier NX安装 Anaconda。为了实现类似的 Python 科学计算环境管理功能,可以使用 **Miniforge** 作为替代方案[^1]。 以下是具体的安装步骤: #### 下载并安装 Miniforge 通过以下命令下载适用于 ARM 平台的 Miniforge 安装脚本,并完成安装过程: ```bash wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh chmod +x Miniforge3-Linux-aarch64.sh ./Miniforge3-Linux-aarch64.sh ``` 执行上述脚本后,按照提示完成安装并向 shell 配置文件(如 `.bashrc` 或 `.zshrc`)中添加路径初始化语句。完成后重新加载配置文件: ```bash source ~/.bashrc ``` 此时,Miniforge 已经成功安装到系统中,并可以通过 `mamba` 或 `conda` 命令来创建虚拟环境和安装依赖项。 #### 创建 Conda 虚拟环境 推荐使用 Mamba 加速依赖解析流程。如果尚未安装 Mamba,则可通过以下方式安装: ```bash conda install mamba -n base -c conda-forge ``` 之后即可利用 Mamba 来创建新的虚拟环境: ```bash mamba create -n myenv python=3.9 mamba activate myenv ``` 在此基础上可以根据需求进一步安装所需的库或框架,例如 PyTorch、TensorFlow 等[^4]。 --- ### 注意事项 对于首次运行 JetPack 5.x 版本镜像的情况,请务必确认 QSPI 更新操作已完成,否则可能导致系统不稳定或其他异常行为[^3]。 此外需要注意的是,在 Jetson 设备上构建深度学习模型训练或者推理所需的大规模软件栈时,应优先考虑轻量化工具链的选择以减少资源占用率,比如采用 TensorFlow Lite 或 ONNX Runtime 进行优化后的模型部署工作[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值