shufflenet_v2

续上篇的shufflenet_v1,这里脚本基本没变,只是更改了网络模型文件shufflenet_v2.py

参考链接(详解):https://blog.csdn.net/u011995719/article/details/81409245

1.data_process.py(数据处理:这里随便选了两张照片,重复造数据,生成数据集)

import numpy as np
import random
import cv2
import os
import shutil
 
 
# path="data/train/"
# for file in os.listdir(path):
#     file_name=path+file
#     print(file_name)
#     for i in range(100):
#         new_file_name=path+file.split('.')[0]+"_"+str(i+1)+'.jpg'
#         shutil.copy(file_name,new_file_name)
 
 
f1=open("data/train/data.txt",'w+')
path="data/train/"
for file in os.listdir(path):
    file_name=path+file
    print(file_name)
    if file.endswith('jpg'):
        f1.write(file+' '+file.split('.')[0].split('_')[0]+'\n')

2.train.py

import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.imagenet_utils import preprocess_input
from keras.utils import plot_model
from shufflenet import ShuffleNet
from shufflenetv2 import ShuffleNetV2
from keras.preprocessing.image import load_img
from keras.preprocessing import image
from keras.callbacks import CSVLogger, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler
import numpy as np
import cv2
import time
import os
import utils
import tensorflow as tf

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto()
config.gpu_options.allow_growth=True   #不全部占满显存, 按需分配

start=time.time()

#加载数据一
train_path='data/train/'
test_path='data/test/'
enhance_label=0

train_data,train_label=utils.load_dataset1(train_path,enhance_label)
test_data,test_label=utils.load_dataset1(test_path,enhance_label)
time=time.time()-start
print("加载数据耗时:",time)

log_dir='model/'
#接着上一次的echo继续训练
inital_epoch = 0
#append:True:如果文件存在则追加(对继续培训很有用);False:覆盖现有文件。 separator:元素分隔符
csv_logger = CSVLogger('log3.log', append=(inital_epoch is not 0))

# checkpoint = ModelCheckpoint(filepath='log3/m8.hdf5', verbose=0, save_best_only=True, monitor='val_acc', mode='max')
# #动态设置学习率,按照epoch的次数自动调整学习率
# learn_rates = [0.05, 0.01, 0.005, 0.001, 0.0005]
# lr_scheduler = LearningRateScheduler(lambda epoch: learn_rates[epoch // 30])   #每30个epoch改变一次学习率

checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                            monitor='val_loss', save_weights_only=False, save_best_only=True, period=5)

#调用shufflenet网络架构
model = ShuffleNetV2(groups=3, pooling='avg')

model.compile(
          optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0),
          metrics=['accuracy'],   #评价指标
          loss='categorical_crossentropy')   #计算损失---分类交叉熵函数,  binary_crossentropy(二分类)

# 训练方法二
models = model.fit(
        train_data,
        train_label,
        batch_size=64,
        epochs=5,
        verbose=1,
        shuffle=True,
        callbacks=[csv_logger, checkpoint],
        initial_epoch=0,   #从指定的epoch开始训练,在这之前的训练时仍有用。
        validation_split=0.1   #0~1之间,用来指定训练集的一定比例数据作为验证集
        # validation_data=(test_data, test_label)   #指定的验证集,此参数将覆盖validation_spilt。
)


#保存权重model.save_weights(),保存模型model.save()
model.save('m2.h5')   #保存最后一次迭代的模型
model.save_weights('m1.h5')

# plt.plot(models.history['acc'])
# plt.plot(models.history['val_acc'])
# plt.title('Model accuracy')
# plt.ylabel('Accuracy')
# plt.xlabel('Epoch')
# plt.legend(['Train', 'Test'], loc='upper left')
# plt.show()
# plt.savefig('model2/plot1.jpg', format='jpg')

3.test.py

from shufflenet import ShuffleNet
from shufflenetv2 import ShuffleNetV2
from keras.preprocessing.image import load_img
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
from keras.models import load_model
import numpy as np
import utils
import keras
import os
import tensorflow as tf


model = ShuffleNetV2(groups=3, pooling='avg')
model.compile(
          optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0),
          metrics=['accuracy'],
          loss='categorical_crossentropy')

model.load_weights('model/ep005-loss0.002-val_loss0.000.h5')

# model = load_model('model1/log1/m2.h5')


# 批量预测
path='E:/eye_dataset/test/eye/'
path2='data/test/'
acc=utils.get_acc(model,path2)
print("预测准确度:",acc)


# test_path='data2/test/'
# test_data,test_label=utils.load_dataset1(test_path,0)
# print(test_data.shape,test_label.shape)
# # 验证以及预测
# loss,acc=model.evaluate(test_data,test_label,verbose=1)
# print("验证集的损失为:",loss,"   精度为:",acc)

3.shufflenetv2.py

#-*- coding:utf-8 -*-
#'''
# Created on 18-8-14 下午4:48
#
# @Author: Greg Gao(laygin)
#'''
import numpy as np
from keras.utils import plot_model
from keras_applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs
from keras.layers import Input, Conv2D, MaxPool2D, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.layers import Activation, Add, Concatenate, Dense
from keras.layers import AveragePooling2D, BatchNormalization, Lambda, DepthwiseConv2D
from keras.models import Model
import keras.backend as K
import os



def ShuffleNetV2(include_top=True,
                 input_tensor=None,
                 scale_factor=1.0,
                 pooling='max',
                 input_shape=(224,224,3),
                 groups=1,
                 load_model=None,
                 num_shuffle_units=[3,7,3],
                 bottleneck_ratio=1,
                 classes=2):

    if K.backend() != 'tensorflow':
        raise RuntimeError('Only tensorflow supported for now')

    name = 'ShuffleNetV2_{}_{}_{}'.format(scale_factor, bottleneck_ratio, "".join([str(x) for x in num_shuffle_units]))
    input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=28, require_flatten=include_top,
                                      data_format=K.image_data_format())
    out_dim_stage_two = {0.5:48, 1:116, 1.5:176, 2:244}

    # 只允许两种池化方式
    if pooling not in ['max', 'avg']:
        raise ValueError('Invalid value for pooling')

    # is_integer:判断是否是整形
    if not (float(scale_factor)*4).is_integer():
        raise ValueError('Invalid value for scale_factor, should be x over 4')

    exp = np.insert(np.arange(len(num_shuffle_units), dtype=np.float32), 0, 0)  # [0., 0., 1., 2.]
    out_channels_in_stage = 2**exp
    out_channels_in_stage *= out_dim_stage_two[bottleneck_ratio]  #  calculate output channels for each stage
    out_channels_in_stage[0] = 24  # first stage has always 24 output channels
    out_channels_in_stage *= scale_factor
    out_channels_in_stage = out_channels_in_stage.astype(int)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        #判断是否是keras指定的数据类型,is_keras_tensor
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # 1.卷积+池化
    x = Conv2D(filters=out_channels_in_stage[0], kernel_size=(3, 3), padding='same', use_bias=False, strides=(2, 2),
               activation='relu', name='conv1')(img_input)
    x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool1')(x)

    # 2.Stage2、Stage3、Stage4
    for stage in range(len(num_shuffle_units)):
        repeat = num_shuffle_units[stage]   #repeat=3/7/3
        x = block(x, out_channels_in_stage,
                   repeat=repeat,
                   bottleneck_ratio=bottleneck_ratio,
                   stage=stage + 2)

    if bottleneck_ratio < 2:
        k = 1024
    else:
        k = 2048
    # 3.卷积
    x = Conv2D(k, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x)
    # 4.global_pool
    if pooling == 'avg':
        x = GlobalAveragePooling2D(name='global_avg_pool')(x)
    elif pooling == 'max':
        x = GlobalMaxPooling2D(name='global_max_pool')(x)

    # 5.FC层
    if include_top:
        x = Dense(classes, name='fc')(x)
        x = Activation('softmax', name='softmax')(x)

    if input_tensor:
        # get_source_inputs 返回计算需要的数据列表,List of input tensors
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # 相当于tf的fit,喂入:inputs。输出:x   也可以输入输出多个参数:Model([x,y,z], [out_x,out_y])
    model = Model(inputs, x, name=name)

    if load_model:
        model.load_weights('', by_name=True)
        print('load_model.................')
    return model


def channel_split(x, name=''):
    # equipartition
    in_channles = x.shape.as_list()[-1]
    ip = in_channles // 2
    c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x)
    c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x)
    return c_hat, c

def channel_shuffle(x):
    height, width, channels = x.shape.as_list()[1:]
    channels_per_split = channels // 2
    x = K.reshape(x, [-1, height, width, 2, channels_per_split])
    x = K.permute_dimensions(x, (0,1,2,4,3))
    x = K.reshape(x, [-1, height, width, channels])
    return x


def shuffle_unit(inputs, out_channels, bottleneck_ratio,strides=2,stage=1,block=1):
    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        raise ValueError('Only channels last supported')

    # 第n个stage,第m个block   (总共三个stage,分别3、7、3个block)
    prefix = 'stage{}/block{}'.format(stage, block)
    bottleneck_channels = int(out_channels * bottleneck_ratio)
    if strides < 2:
        c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
        inputs = c

    # 网络结构:线路2
    x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
    x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
    x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
    x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
    x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)

    # 网络结构:线路1+Concat
    if strides < 2:
        ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
    else:
        s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
        s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
        s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
        s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
        ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
        
    # channel_shuffle
    ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)

    return ret

# shuffle_unit: repeat1+repeat3 / repeat1+repeat7 / repeat1+repeat3
def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1):
    x = shuffle_unit(x, out_channels=channel_map[stage-1],
                      strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1)

    for i in range(1, repeat+1):
        x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1,
                          bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i))

    return x

4.utils.py

from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing.image import load_img
from keras.preprocessing import image
import numpy as np
import random
import cv2
import os

def one_hot(data, num_classes):
  return np.squeeze(np.eye(num_classes)[data.reshape(-1)])

# 限制学习率下标
def get_num(a):
  if a>4:
    a=4
  return a

#预测结果返回0、1
def get_result(pre):
    if pre[0][0]>pre[0][1]:
        return 0
    else:
        return 1

def preprocess(x):
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    x /= 255.0
    x -= 0.5
    x *= 2.0
    return x


def random_enhance(path,file): #随机颜色
    img = cv2.imread(path+file)
    img = cv2.resize(img, (224,224), interpolation=cv2.INTER_AREA)

    # 1.图片随机裁剪
    img = cv2.copyMakeBorder(img,8,8,8,8,cv2.BORDER_CONSTANT,value=(0,0,0))   #扩大填充黑色
    upper_x = random.randint(0,16)
    dowm_x =upper_x+224
    upper_y = random.randint(0,16)
    dowm_y = upper_y+224
    image = img[upper_x:dowm_x,upper_y:dowm_y]

    num1=random.randint(0,1)
    # 2.随机翻转
    if (num1==0):
        image=cv2.flip(image, 1)   #1:水平翻转  0:垂直翻转  -1:水平垂直翻转


    img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    w=image.shape[0]
    h=image.shape[1]

    num2=random.randint(0,5)
    # 1.hsv——色调
    if (num2==0):
        set_h = np.random.uniform(-3,8)
        for i in range(w):
            for j in range(h):
                hsv_h=img_hsv[i,j][0]
                hsv_h+=set_h
                if hsv_h>255:
                    hsv_h=255
                if hsv_h<0:
                    hsv_h=0
                img_hsv[i,j][0]=hsv_h
        image = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)

    # 2.hsv——饱和度
    if (num2==1):
        set_s = np.random.uniform(-30,30)
        for i in range(w):
            for j in range(h):
                hsv_s=img_hsv[i,j][1]
                hsv_s+=set_s
                if hsv_s>255:
                    hsv_s=255
                if hsv_s<0:
                    hsv_s=0
                img_hsv[i,j][1]=hsv_s
        image = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)

    # 3.hsv——亮度
    if (num2==2):
        set_v = np.random.uniform(-30,30)
        for i in range(w):
            for j in range(h):
                v=img_hsv[i,j][2]
                v+=set_v
                if v>255:
                    v=255
                if v<0:
                    v=0
                img_hsv[i,j][2]=v
        image = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)

    return image


#自己写的图片加载
def load_dataset1(path,enhance_label):
    dataset = []
    labels = []
    f1=open(path+'data.txt','r')
    for line in f1.readlines():
        file_name=line.strip().split(' ')[0]
        label=int(line.strip().split(' ')[-1])
        # print(file_name,label)
        if enhance_label==0:
            # 1.原数据加载
            pic=cv2.imread(path+file_name)
            pic=cv2.resize(pic,(224,224), interpolation=cv2.INTER_CUBIC)
            dataset.append(pic)
            labels.append(label)
        if enhance_label==1:
            # 2.数据随机增强后加载
            pic=random_enhance(path,file_name)
            dataset.append(pic)
            labels.append(label)

    dataset=np.array(dataset)
    labels=np.array(labels)
    labels=one_hot(labels, 2)
    return dataset, labels

#generator
def load_dataset2(path,enhance_label):
    while 1:
        dataset = []
        labels = []
        batch_size=64

        f1=open(path+'data.txt','r')       
        lines=f1.readlines()
        number=np.random.randint(0,len(lines),size=batch_size)

        for i in range(batch_size):
            num=number[i]
            file_name=lines[num].strip().split(' ')[0]
            label=int(lines[num].strip().split(' ')[-1])
            # print(file_name,label)

            if enhance_label==0:
                # 1.原数据加载
                pic=cv2.imread(path+file_name)
                pic=cv2.resize(pic,(224,224), interpolation=cv2.INTER_CUBIC)
                dataset.append(pic)
                labels.append(label)

            if enhance_label==1:
                # 2.数据随机增强后加载
                pic=random_enhance(path,file_name)
                dataset.append(pic)
                labels.append(label)

        dataset=np.array(dataset)
        labels=np.array(labels)
        labels=one_hot(labels, 2)
    
        yield dataset, labels


#按标签批量预测
def get_acc(model, path):
    n=0
    total=0
    f1 = open(path + 'data.txt', 'r')
    for line in f1.readlines():
        total += 1
        file_name=line.strip().split(' ')[0]
        label=int(line.strip().split(' ')[-1])
        # print(file_name,label)

        img = load_img(path + file_name, target_size=(224, 224))
        # img = image.img_to_array(img) / 255.0
        img = np.expand_dims(img, axis=0)
        
        predictions = model.predict(img)
        result = get_result(predictions)
        print("预测值为:", result,predictions,'---'+str(total))

        if result==label:
            n += 1
    acc=n/total
    print("准确度为:",acc)
    return acc


# # 加载数据
# test_path='data2/test/'
# train_data_label=load_dataset2(test_path,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值