本专栏是笔者主编教材(图0所示)的电子版,依托简易的元器件和仪表安排了30多个实验,主要面向经费不太充足的中高职院校。每个实验都安排了必不可少的【预习知识】,精心设计的【实验步骤】,全面丰富的【思考习题】。因此,对于开展电子技术教学犯愁的师生,本专栏应该能够帮到你们。

实验21 RC串联电路
【实验目的】
- 通过对 RC 串联电路的测量,进一步理解电容的交流特性。
- 理解 RC 串联电路的阻抗和电压相量图的含义。
- 理解交流电频率是如何影响 RC 串联电路的阻抗和电压相量的。
【预习知识】
当一个正弦信号加在只有线性元件(电阻、电容和电感)的电路中,该电路所有的信号均是同频率的正弦波。为了了解正弦电压和电流之间的关系,我们可以用相量的形式来表示交流波形。相量是一个复数,用来表示正弦波的幅度和相位。复数代数可以用来对正弦波进行算术运算,而相量图是显示各种波形的幅度和相位关系非常有用的工具。
为了便于理解和展示,图1(a)所示的 RC 串联电路取了相对特殊的电气参数,其阻抗相量及关系如图1(b)所示。电路总阻抗大小是5kΩ,因此总电流大小是 1mA。由于是串联电路,流过各元件的电流是相同的(故作为参考相量)。将各阻抗相量与电流相量相乘就得到了电压相量图,如图1(c)所示。电压和电流在电阻上是同相位的,而对于电容上的电压,则会滞后于电流 90°。信号源电压是电阻电压和电容电压的相量和,遵循平行四边形法则。

图1中的相量关系只在同一个频率才成立,因为容抗的大小与频率有关。随着频率的增加,容抗减小,这将总阻抗的相位角以及元件上的电压。通过本实验我们将理解这些变化。
【实验元件与仪器】
- 6.8kΩ电阻1支
- 0.01μF陶瓷电容1支
- 函数信号发生器1台
- 双踪示波器1台
【操作内容及步骤】
1. 按照图2所示的 RC 串联电路连线。设置函数发生器的输出为正弦信号,频率 500Hz,峰峰值 3.0V,并将该信号送入示波器的 CH1 通道进行验证。

2. 用示波器的 CH2 通道测量电容上的电压信号 ,再用两通道信号差的方式测量电阻上的电压信号
。将这两个信号的峰峰值记录在表1对应栏中。
3. 在电阻上使用欧姆定律计算电流信号的峰峰值 ,并记录在表1对应栏中。由于是串联电路,所以流过电阻和电容的电流是一致的。
4. 根据以上测量数据计算容抗 ,并记录在表1对应栏中。
5. 再计算一下电路的总阻抗 ,并记录在表1对应栏中。
6. 根据表1中的其他频率值调整函数发生器,重复第2~5步的操作。注意,每次测量前确认 的峰峰值为3.0V。
7. 根据表1的实验数据以及 的阻值,参考图1,在图3中绘制
下的电路阻抗相量图和电压相量图。注意,你需要根据实际选取合适的刻度值。
8. 当 时,重复上一步,将相量图绘制在图4中。
9. 相量图揭示了阻抗相量和电压相量如何随频率变化。为了进一步研究频率对电路的影响,可以绘制电容电压和电阻电压随频率变换的曲线。请在图5中完成这两条曲线的绘制,记得给每条曲线做好标识。



【实验思考与讨论】
1. 图3的阻抗相量和图4的电压相量应该满足勾股定理,请验证你的数据是否满足下面两个等式:
2. 假如你希望 RC 串联电路(滤波器)通高频信号而阻低频信号,根据图5,输出信号应该从电容两端引出还是从电阻两端引出?请说明理由。
3. 随着频率的增加,请回答下面两个问题
a) RC 串联电路的总阻抗如何变化?
b) 信号源和电阻电压的相位差如何变化?并解释原因。
4. 如果将本实验所用的电容变成 0.1μF(即现在的10倍),请预测图5的曲线会发生什么变化?为什么会出现这样的变化?
5. 假如 RC 串联电路某处开路导致无电流,该如何快速确定是电阻开路还是电容开路?
【实验拓展与延伸】
通过本实验可知,电压相量可以通过阻抗相量与电流相量相乘得到。同理,如果把电压相量与电流相量相乘,得到的就是功率相量。根据表1的实验数据,取电压和电流的有效值,计算 RC 串联电路在 1kHz 和 4kHz 下的有功功率、无功功率和视在功率,并将相量图绘制在图6中。

(本文完)